Skip to content

Mean Average Recall

supervision.metrics.mean_average_recall.MeanAverageRecall

Bases: Metric

Mean Average Recall (mAR) measures how well the model detects and retrieves relevant objects by averaging recall over multiple IoU thresholds, classes and detection limits.

Intuitively, while Recall measures the ability to find all relevant objects, mAR narrows down how many detections are considered for each class. For example, mAR @ 100 considers the top 100 highest confidence detections for each class. mAR @ 1 considers only the highest confidence detection for each class.

Examples:

>>> import numpy as np
>>> import supervision as sv
>>> from supervision.metrics import MeanAverageRecall
>>> predictions = sv.Detections(
...     xyxy=np.array([[0, 0, 10, 10]]),
...     class_id=np.array([0]),
...     confidence=np.array([0.9])
... )
>>> targets = sv.Detections(
...     xyxy=np.array([[0, 0, 10, 10]]),
...     class_id=np.array([0])
... )
>>> mar_metric = MeanAverageRecall()
>>> mar_result = mar_metric.update(predictions, targets).compute()
>>> round(float(mar_result.mAR_at_100), 2)
1.0

example_plot

Source code in src/supervision/metrics/mean_average_recall.py
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
class MeanAverageRecall(Metric):
    """
    Mean Average Recall (mAR) measures how well the model detects
    and retrieves relevant objects by averaging recall over multiple
    IoU thresholds, classes and detection limits.

    Intuitively, while Recall measures the ability to find all relevant
    objects, mAR narrows down how many detections are considered for each
    class. For example, mAR @ 100 considers the top 100 highest confidence
    detections for each class. mAR @ 1 considers only the highest
    confidence detection for each class.

    Examples:
        ```pycon
        >>> import numpy as np
        >>> import supervision as sv
        >>> from supervision.metrics import MeanAverageRecall
        >>> predictions = sv.Detections(
        ...     xyxy=np.array([[0, 0, 10, 10]]),
        ...     class_id=np.array([0]),
        ...     confidence=np.array([0.9])
        ... )
        >>> targets = sv.Detections(
        ...     xyxy=np.array([[0, 0, 10, 10]]),
        ...     class_id=np.array([0])
        ... )
        >>> mar_metric = MeanAverageRecall()
        >>> mar_result = mar_metric.update(predictions, targets).compute()
        >>> round(float(mar_result.mAR_at_100), 2)
        1.0

        ```

    ![example_plot](
        https://media.roboflow.com/supervision-docs/metrics/mAR_plot_example.png
    ){ align=center width="800" }
    """

    def __init__(
        self,
        metric_target: MetricTarget = MetricTarget.BOXES,
    ):
        """
        Initialize the Mean Average Recall metric.

        Args:
            metric_target: The type of detection data to use.
        """
        self._metric_target = metric_target

        self._predictions_list: list[Detections] = []
        self._targets_list: list[Detections] = []

        self.max_detections = np.array([1, 10, 100])

    def reset(self) -> None:
        """
        Reset the metric to its initial state, clearing all stored data.
        """
        self._predictions_list = []
        self._targets_list = []

    def update(
        self,
        predictions: Detections | list[Detections],
        targets: Detections | list[Detections],
    ) -> MeanAverageRecall:
        """
        Add new predictions and targets to the metric, but do not compute the result.

        Args:
            predictions: The predicted detections.
            targets: The target detections.

        Returns:
            The updated metric instance.
        """
        if not isinstance(predictions, list):
            predictions = [predictions]
        if not isinstance(targets, list):
            targets = [targets]

        if len(predictions) != len(targets):
            raise ValueError(
                f"The number of predictions ({len(predictions)}) and"
                f" targets ({len(targets)}) during the update must be the same."
            )

        self._predictions_list.extend(predictions)
        self._targets_list.extend(targets)

        return self

    def compute(self) -> MeanAverageRecallResult:
        """
        Calculate the Mean Average Recall metric based on the stored predictions
        and ground-truth, at different IoU thresholds and maximum detection counts.

        Returns:
            The Mean Average Recall metric result.
        """
        result = self._compute(self._predictions_list, self._targets_list)

        small_predictions, small_targets = self._filter_predictions_and_targets_by_size(
            self._predictions_list, self._targets_list, ObjectSizeCategory.SMALL
        )
        result.small_objects = self._compute(small_predictions, small_targets)

        medium_predictions, medium_targets = (
            self._filter_predictions_and_targets_by_size(
                self._predictions_list, self._targets_list, ObjectSizeCategory.MEDIUM
            )
        )
        result.medium_objects = self._compute(medium_predictions, medium_targets)

        large_predictions, large_targets = self._filter_predictions_and_targets_by_size(
            self._predictions_list, self._targets_list, ObjectSizeCategory.LARGE
        )
        result.large_objects = self._compute(large_predictions, large_targets)

        return result

    def _compute(
        self, predictions_list: list[Detections], targets_list: list[Detections]
    ) -> MeanAverageRecallResult:
        iou_thresholds = np.linspace(0.5, 0.95, 10)
        stats: list[Any] = []

        for predictions, targets in zip(predictions_list, targets_list):
            prediction_contents = self._detections_content(predictions)
            target_contents = self._detections_content(targets)

            if len(targets) > 0:
                if len(predictions) == 0:
                    stats.append(
                        (
                            np.zeros((0, iou_thresholds.size), dtype=bool),
                            np.zeros((0,), dtype=int),
                            np.zeros((0,), dtype=int),
                            targets.class_id,
                        )
                    )

                else:
                    if self._metric_target == MetricTarget.BOXES:
                        iou = box_iou_batch(target_contents, prediction_contents)
                    elif self._metric_target == MetricTarget.MASKS:
                        iou = mask_iou_batch(target_contents, prediction_contents)
                    elif self._metric_target == MetricTarget.ORIENTED_BOUNDING_BOXES:
                        iou = oriented_box_iou_batch(
                            target_contents, prediction_contents
                        )
                    else:
                        raise ValueError(
                            "Unsupported metric target for IoU calculation"
                        )

                    matches = self._match_detection_batch(
                        predictions.class_id
                        if predictions.class_id is not None
                        else np.array([]),
                        targets.class_id
                        if targets.class_id is not None
                        else np.array([]),
                        iou,
                        iou_thresholds,
                    )

                    sorted_indices = np.argsort(
                        -cast(npt.NDArray[np.float32], predictions.confidence)
                    )
                    stats.append(
                        (
                            matches[sorted_indices],
                            np.arange(len(predictions)),
                            cast(npt.NDArray[np.int32], predictions.class_id)[
                                sorted_indices
                            ],
                            cast(npt.NDArray[np.int32], targets.class_id),
                        )
                    )

        if not stats:
            return MeanAverageRecallResult(
                metric_target=self._metric_target,
                recall_scores=np.zeros(iou_thresholds.shape[0]),
                recall_per_class=np.zeros((0, iou_thresholds.shape[0])),
                max_detections=self.max_detections,
                iou_thresholds=iou_thresholds,
                matched_classes=np.array([], dtype=int),
                small_objects=None,
                medium_objects=None,
                large_objects=None,
            )

        concatenated_stats = [np.concatenate(items, 0) for items in zip(*stats)]
        recall_scores_per_k, recall_per_class, unique_classes = (
            self._compute_average_recall_for_classes(*concatenated_stats)
        )

        return MeanAverageRecallResult(
            metric_target=self._metric_target,
            recall_scores=recall_scores_per_k,
            recall_per_class=recall_per_class,
            max_detections=self.max_detections,
            iou_thresholds=iou_thresholds,
            matched_classes=unique_classes,
            small_objects=None,
            medium_objects=None,
            large_objects=None,
        )

    def _compute_average_recall_for_classes(
        self,
        matches: npt.NDArray[np.bool_],
        prediction_indices: npt.NDArray[np.int32],
        prediction_class_ids: npt.NDArray[np.int32],
        true_class_ids: npt.NDArray[np.int32],
    ) -> tuple[
        npt.NDArray[np.float64],
        npt.NDArray[np.float64],
        npt.NDArray[np.int32],
    ]:
        unique_classes, class_counts = np.unique(true_class_ids, return_counts=True)

        recalls_at_k = []
        for max_detections in self.max_detections:
            # Shape: PxTh,P,C,C -> CxThx3
            confusion_matrix = self._compute_confusion_matrix(
                matches[prediction_indices < max_detections],
                prediction_class_ids[prediction_indices < max_detections],
                unique_classes,
                class_counts,
            )

            # Shape: CxThx3 -> CxTh
            recall_per_class = self._compute_recall(confusion_matrix)
            recalls_at_k.append(recall_per_class)

        # Shape: KxCxTh -> KxC
        recalls_at_k = np.array(recalls_at_k)
        average_recall_per_class = np.mean(recalls_at_k, axis=2)

        # Shape: KxC -> K
        recall_scores = np.mean(average_recall_per_class, axis=1)

        return recall_scores, recall_per_class, unique_classes

    @staticmethod
    def _match_detection_batch(
        predictions_classes: npt.NDArray[np.int32],
        target_classes: npt.NDArray[np.int32],
        iou: npt.NDArray[np.float32],
        iou_thresholds: npt.NDArray[np.float32],
    ) -> npt.NDArray[np.bool_]:
        num_predictions, num_iou_levels = (
            predictions_classes.shape[0],
            iou_thresholds.shape[0],
        )
        correct = np.zeros((num_predictions, num_iou_levels), dtype=bool)
        correct_class = target_classes[:, None] == predictions_classes

        for i, iou_level in enumerate(iou_thresholds):
            matched_indices = np.where((iou >= iou_level) & correct_class)

            if matched_indices[0].shape[0]:
                combined_indices = np.stack(matched_indices, axis=1)
                iou_values = iou[matched_indices][:, None]
                matches = np.hstack([combined_indices, iou_values])

                if matched_indices[0].shape[0] > 1:
                    matches = matches[matches[:, 2].argsort()[::-1]]
                    matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
                    matches = matches[np.unique(matches[:, 0], return_index=True)[1]]

                correct[matches[:, 1].astype(int), i] = True
        result_correct: npt.NDArray[np.bool_] = correct
        return result_correct

    @staticmethod
    def _compute_confusion_matrix(
        sorted_matches: npt.NDArray[np.bool_],
        sorted_prediction_class_ids: npt.NDArray[np.int32],
        unique_classes: npt.NDArray[np.int32],
        class_counts: npt.NDArray[np.int32],
    ) -> npt.NDArray[np.float64]:
        """
        Compute the confusion matrix for each class and IoU threshold.

        Assumes the matches and prediction_class_ids are sorted by confidence
        in descending order.

        Args:
            sorted_matches: shape (P, Th), that is True
                if the prediction is a true positive at the given IoU threshold.
            sorted_prediction_class_ids: shape (P,), containing
                the class id for each prediction.
            unique_classes: shape (C,), containing the unique
                class ids.
            class_counts: shape (C,), containing the number
                of true instances for each class.
            max_detections: The maximum number of detections to
                consider for each class. Extra detections are considered false
                positives. By default, all detections are considered.

        Returns:
            shape (C, Th, 3), containing the true positives, false
                positives, and false negatives for each class and IoU threshold.
        """
        num_thresholds = sorted_matches.shape[1]
        num_classes = unique_classes.shape[0]

        confusion_matrix: npt.NDArray[np.float64] = np.zeros(
            (num_classes, num_thresholds, 3), dtype=np.float64
        )
        for class_idx, class_id in enumerate(unique_classes):
            is_class = sorted_prediction_class_ids == class_id
            num_true = class_counts[class_idx]
            num_predictions = is_class.sum()

            if num_predictions == 0:
                true_positives = np.zeros(num_thresholds)
                false_positives = np.zeros(num_thresholds)
                false_negatives = np.full(num_thresholds, num_true)
            elif num_true == 0:
                true_positives = np.zeros(num_thresholds)
                false_positives = np.full(num_thresholds, num_predictions)
                false_negatives = np.zeros(num_thresholds)
            else:
                limited_matches = sorted_matches[is_class]
                true_positives = limited_matches.sum(0)

                false_positives = (1 - limited_matches).sum(0)
                false_negatives = num_true - true_positives

            confusion_matrix[class_idx] = np.stack(
                [true_positives, false_positives, false_negatives], axis=1
            )

        result_confusion_matrix: npt.NDArray[np.float64] = confusion_matrix
        return result_confusion_matrix

    @staticmethod
    def _compute_recall(
        confusion_matrix: npt.NDArray[np.float64],
    ) -> npt.NDArray[np.float64]:
        """
        Broadcastable function, computing the recall from the confusion matrix.

        Arguments:
            confusion_matrix: shape (N, ..., 3), where the last dimension
                contains the true positives, false positives, and false negatives.

        Returns:
            shape (N, ...), containing the recall for each element.
        """
        if not confusion_matrix.shape[-1] == 3:
            raise ValueError(
                f"Confusion matrix must have shape (..., 3), got "
                f"{confusion_matrix.shape}"
            )
        true_positives = confusion_matrix[..., 0]
        false_negatives = confusion_matrix[..., 2]

        denominator = true_positives + false_negatives
        recall = np.where(denominator == 0, 0, true_positives / denominator)

        result_recall: npt.NDArray[np.float64] = recall
        return result_recall

    def _detections_content(self, detections: Detections) -> npt.NDArray[Any]:
        """Return boxes, masks or oriented bounding boxes from detections."""
        if self._metric_target == MetricTarget.BOXES:
            result_boxes: npt.NDArray[np.float32] = detections.xyxy
            return result_boxes
        if self._metric_target == MetricTarget.MASKS:
            if detections.mask is not None:
                result_masks: npt.NDArray[np.bool_] = detections.mask
                return result_masks
            return self._make_empty_content()
        if self._metric_target == MetricTarget.ORIENTED_BOUNDING_BOXES:
            obb = detections.data.get(ORIENTED_BOX_COORDINATES)
            if obb is not None and len(obb) > 0:
                result_obb: npt.NDArray[np.float32] = np.array(obb, dtype=np.float32)
                return result_obb
            return self._make_empty_content()
        raise ValueError(f"Invalid metric target: {self._metric_target}")

    def _make_empty_content(self) -> npt.NDArray[Any]:
        if self._metric_target == MetricTarget.BOXES:
            empty_boxes: npt.NDArray[np.float32] = np.empty((0, 4), dtype=np.float32)
            return empty_boxes

        if self._metric_target == MetricTarget.MASKS:
            empty_masks: npt.NDArray[np.bool_] = np.empty((0, 0, 0), dtype=bool)
            return empty_masks

        if self._metric_target == MetricTarget.ORIENTED_BOUNDING_BOXES:
            empty_obb: npt.NDArray[np.float32] = np.empty((0, 4, 2), dtype=np.float32)
            return empty_obb

        raise ValueError(f"Invalid metric target: {self._metric_target}")

    def _filter_detections_by_size(
        self, detections: Detections, size_category: ObjectSizeCategory
    ) -> Detections:
        """Return a copy of detections with contents filtered by object size."""
        new_detections = deepcopy(detections)
        if detections.is_empty() or size_category == ObjectSizeCategory.ANY:
            return new_detections

        sizes = get_detection_size_category(new_detections, self._metric_target)
        size_mask = sizes == size_category.value

        new_detections.xyxy = new_detections.xyxy[size_mask]
        if new_detections.mask is not None:
            new_detections.mask = new_detections.mask[size_mask]
        if new_detections.class_id is not None:
            new_detections.class_id = new_detections.class_id[size_mask]
        if new_detections.confidence is not None:
            new_detections.confidence = new_detections.confidence[size_mask]
        if new_detections.tracker_id is not None:
            new_detections.tracker_id = new_detections.tracker_id[size_mask]
        if new_detections.data is not None:
            for key, value in new_detections.data.items():
                new_detections.data[key] = np.array(value)[size_mask]

        return new_detections

    def _filter_predictions_and_targets_by_size(
        self,
        predictions_list: list[Detections],
        targets_list: list[Detections],
        size_category: ObjectSizeCategory,
    ) -> tuple[list[Detections], list[Detections]]:
        """
        Filter predictions and targets by object size category.
        """
        new_predictions_list = []
        new_targets_list = []
        for predictions, targets in zip(predictions_list, targets_list):
            new_predictions_list.append(
                self._filter_detections_by_size(predictions, size_category)
            )
            new_targets_list.append(
                self._filter_detections_by_size(targets, size_category)
            )
        return new_predictions_list, new_targets_list

Functions

__init__(metric_target: MetricTarget = MetricTarget.BOXES)

Initialize the Mean Average Recall metric.

Parameters:

Name Type Description Default
metric_target
MetricTarget

The type of detection data to use.

BOXES
Source code in src/supervision/metrics/mean_average_recall.py
def __init__(
    self,
    metric_target: MetricTarget = MetricTarget.BOXES,
):
    """
    Initialize the Mean Average Recall metric.

    Args:
        metric_target: The type of detection data to use.
    """
    self._metric_target = metric_target

    self._predictions_list: list[Detections] = []
    self._targets_list: list[Detections] = []

    self.max_detections = np.array([1, 10, 100])

compute() -> MeanAverageRecallResult

Calculate the Mean Average Recall metric based on the stored predictions and ground-truth, at different IoU thresholds and maximum detection counts.

Returns:

Type Description
MeanAverageRecallResult

The Mean Average Recall metric result.

Source code in src/supervision/metrics/mean_average_recall.py
def compute(self) -> MeanAverageRecallResult:
    """
    Calculate the Mean Average Recall metric based on the stored predictions
    and ground-truth, at different IoU thresholds and maximum detection counts.

    Returns:
        The Mean Average Recall metric result.
    """
    result = self._compute(self._predictions_list, self._targets_list)

    small_predictions, small_targets = self._filter_predictions_and_targets_by_size(
        self._predictions_list, self._targets_list, ObjectSizeCategory.SMALL
    )
    result.small_objects = self._compute(small_predictions, small_targets)

    medium_predictions, medium_targets = (
        self._filter_predictions_and_targets_by_size(
            self._predictions_list, self._targets_list, ObjectSizeCategory.MEDIUM
        )
    )
    result.medium_objects = self._compute(medium_predictions, medium_targets)

    large_predictions, large_targets = self._filter_predictions_and_targets_by_size(
        self._predictions_list, self._targets_list, ObjectSizeCategory.LARGE
    )
    result.large_objects = self._compute(large_predictions, large_targets)

    return result

reset() -> None

Reset the metric to its initial state, clearing all stored data.

Source code in src/supervision/metrics/mean_average_recall.py
def reset(self) -> None:
    """
    Reset the metric to its initial state, clearing all stored data.
    """
    self._predictions_list = []
    self._targets_list = []

update(predictions: Detections | list[Detections], targets: Detections | list[Detections]) -> MeanAverageRecall

Add new predictions and targets to the metric, but do not compute the result.

Parameters:

Name Type Description Default
predictions
Detections | list[Detections]

The predicted detections.

required
targets
Detections | list[Detections]

The target detections.

required

Returns:

Type Description
MeanAverageRecall

The updated metric instance.

Source code in src/supervision/metrics/mean_average_recall.py
def update(
    self,
    predictions: Detections | list[Detections],
    targets: Detections | list[Detections],
) -> MeanAverageRecall:
    """
    Add new predictions and targets to the metric, but do not compute the result.

    Args:
        predictions: The predicted detections.
        targets: The target detections.

    Returns:
        The updated metric instance.
    """
    if not isinstance(predictions, list):
        predictions = [predictions]
    if not isinstance(targets, list):
        targets = [targets]

    if len(predictions) != len(targets):
        raise ValueError(
            f"The number of predictions ({len(predictions)}) and"
            f" targets ({len(targets)}) during the update must be the same."
        )

    self._predictions_list.extend(predictions)
    self._targets_list.extend(targets)

    return self

supervision.metrics.mean_average_recall.MeanAverageRecallResult dataclass

The results of the Mean Average Recall metric calculation.

Defaults to 0 if no detections or targets were provided.

Attributes:

Name Type Description
metric_target MetricTarget

the type of data used for the metric - boxes, masks or oriented bounding boxes.

mAR_at_1 float

the Mean Average Recall, when considering only the top highest confidence detection for each class.

mAR_at_10 float

the Mean Average Recall, when considering top 10 highest confidence detections for each class.

mAR_at_100 float

the Mean Average Recall, when considering top 100 highest confidence detections for each class.

recall_per_class NDArray[float64]

the recall scores per class and IoU threshold. Shape: (num_target_classes, num_iou_thresholds)

max_detections NDArray[int32]

the array with maximum number of detections considered.

iou_thresholds NDArray[float32]

the IoU thresholds used in the calculations.

matched_classes NDArray[int32]

the class IDs of all matched classes. Corresponds to the rows of recall_per_class.

small_objects MeanAverageRecallResult | None

the Mean Average Recall metric results for small objects (area < 32²).

medium_objects MeanAverageRecallResult | None

the Mean Average Recall metric results for medium objects (32² ≤ area < 96²).

large_objects MeanAverageRecallResult | None

the Mean Average Recall metric results for large objects (area ≥ 96²).

Source code in src/supervision/metrics/mean_average_recall.py
@dataclass
class MeanAverageRecallResult:
    """
    The results of the Mean Average Recall metric calculation.

    Defaults to `0` if no detections or targets were provided.

    Attributes:
        metric_target: the type of data used for the metric -
            boxes, masks or oriented bounding boxes.
        mAR_at_1: the Mean Average Recall, when considering only the top
            highest confidence detection for each class.
        mAR_at_10: the Mean Average Recall, when considering top 10
            highest confidence detections for each class.
        mAR_at_100: the Mean Average Recall, when considering top 100
            highest confidence detections for each class.
        recall_per_class: the recall scores per class and IoU threshold.
            Shape: `(num_target_classes, num_iou_thresholds)`
        max_detections: the array with maximum number of detections
            considered.
        iou_thresholds: the IoU thresholds used in the calculations.
        matched_classes: the class IDs of all matched classes.
            Corresponds to the rows of `recall_per_class`.
        small_objects: the Mean Average Recall
            metric results for small objects (area < 32²).
        medium_objects: the Mean Average Recall
            metric results for medium objects (32² ≤ area < 96²).
        large_objects: the Mean Average Recall
            metric results for large objects (area ≥ 96²).
    """

    metric_target: MetricTarget

    @property
    def mAR_at_1(self) -> float:
        return float(self.recall_scores[0])

    @property
    def mAR_at_10(self) -> float:
        return float(self.recall_scores[1])

    @property
    def mAR_at_100(self) -> float:
        return float(self.recall_scores[2])

    recall_scores: npt.NDArray[np.float64]
    recall_per_class: npt.NDArray[np.float64]
    max_detections: npt.NDArray[np.int32]
    iou_thresholds: npt.NDArray[np.float32]
    matched_classes: npt.NDArray[np.int32]

    small_objects: MeanAverageRecallResult | None
    medium_objects: MeanAverageRecallResult | None
    large_objects: MeanAverageRecallResult | None

    def __str__(self) -> str:
        """
        Format as a pretty string.

        Example:
            ```python
            print(mar_results)
            # MeanAverageRecallResult:
            # Metric target:    MetricTarget.BOXES
            # mAR @ 1:    0.1362
            # mAR @ 10:   0.4239
            # mAR @ 100:  0.5241
            # max detections: [1  10 100]
            # IoU thresh:     [0.5  0.55  0.6  ...]
            # mAR per class:
            # 0: [0.78571  0.78571  0.78571  ...]
            # ...
            # Small objects: ...
            # Medium objects: ...
            # Large objects: ...
            ```
        """
        out_str = (
            f"{self.__class__.__name__}:\n"
            f"Metric target:  {self.metric_target}\n"
            f"mAR @ 1:    {self.mAR_at_1:.4f}\n"
            f"mAR @ 10:   {self.mAR_at_10:.4f}\n"
            f"mAR @ 100:  {self.mAR_at_100:.4f}\n"
            f"max detections: {self.max_detections}\n"
            f"IoU thresh:     {self.iou_thresholds}\n"
            f"mAR per class:\n"
        )
        if self.recall_per_class.size == 0:
            out_str += "  No results\n"
        for class_id, recall_of_class in zip(
            self.matched_classes, self.recall_per_class
        ):
            out_str += f"  {class_id}: {recall_of_class}\n"

        indent = "  "
        if self.small_objects is not None:
            indented = indent + str(self.small_objects).replace("\n", f"\n{indent}")
            out_str += f"\nSmall objects:\n{indented}"
        if self.medium_objects is not None:
            indented = indent + str(self.medium_objects).replace("\n", f"\n{indent}")
            out_str += f"\nMedium objects:\n{indented}"
        if self.large_objects is not None:
            indented = indent + str(self.large_objects).replace("\n", f"\n{indent}")
            out_str += f"\nLarge objects:\n{indented}"

        return out_str

    def to_pandas(self) -> pd.DataFrame:
        """
        Convert the result to a pandas DataFrame.

        Returns:
            The result as a DataFrame.
        """
        ensure_pandas_installed()
        import pandas as pd

        pandas_data = {
            "mAR @ 1": self.mAR_at_1,
            "mAR @ 10": self.mAR_at_10,
            "mAR @ 100": self.mAR_at_100,
        }

        if self.small_objects is not None:
            small_objects_df = self.small_objects.to_pandas()
            for key, value in small_objects_df.items():
                pandas_data[f"small_objects_{key}"] = value
        if self.medium_objects is not None:
            medium_objects_df = self.medium_objects.to_pandas()
            for key, value in medium_objects_df.items():
                pandas_data[f"medium_objects_{key}"] = value
        if self.large_objects is not None:
            large_objects_df = self.large_objects.to_pandas()
            for key, value in large_objects_df.items():
                pandas_data[f"large_objects_{key}"] = value

        return pd.DataFrame(pandas_data, index=[0])

    def plot(self) -> None:
        """
        Plot the Mean Average Recall results.

        ![example_plot](\
            https://media.roboflow.com/supervision-docs/metrics/mAR_plot_example.png\
            ){ align=center width="800" }
        """
        labels = ["mAR @ 1", "mAR @ 10", "mAR @ 100"]
        values = [self.mAR_at_1, self.mAR_at_10, self.mAR_at_100]
        colors = [LEGACY_COLOR_PALETTE[0]] * 3

        if self.small_objects is not None:
            small_objects = self.small_objects
            labels += ["Small: mAR @ 1", "Small: mAR @ 10", "Small: mAR @ 100"]
            values += [
                small_objects.mAR_at_1,
                small_objects.mAR_at_10,
                small_objects.mAR_at_100,
            ]
            colors += [LEGACY_COLOR_PALETTE[3]] * 3

        if self.medium_objects is not None:
            medium_objects = self.medium_objects
            labels += ["Medium: mAR @ 1", "Medium: mAR @ 10", "Medium: mAR @ 100"]
            values += [
                medium_objects.mAR_at_1,
                medium_objects.mAR_at_10,
                medium_objects.mAR_at_100,
            ]
            colors += [LEGACY_COLOR_PALETTE[2]] * 3

        if self.large_objects is not None:
            large_objects = self.large_objects
            labels += ["Large: mAR @ 1", "Large: mAR @ 10", "Large: mAR @ 100"]
            values += [
                large_objects.mAR_at_1,
                large_objects.mAR_at_10,
                large_objects.mAR_at_100,
            ]
            colors += [LEGACY_COLOR_PALETTE[4]] * 3

        plt.rcParams["font.family"] = "monospace"

        _, ax = plt.subplots(figsize=(10, 6))
        ax.set_ylim(0, 1)
        ax.set_ylabel("Value", fontweight="bold")
        title = (
            f"Mean Average Recall, by Object Size\n(target: {self.metric_target.value})"
        )
        ax.set_title(title, fontweight="bold")

        x_positions = range(len(labels))
        bars = ax.bar(x_positions, values, color=colors, align="center")

        ax.set_xticks(x_positions)
        ax.set_xticklabels(labels, rotation=45, ha="right")

        for bar in bars:
            y_value = bar.get_height()
            ax.text(
                bar.get_x() + bar.get_width() / 2,
                y_value + 0.02,
                f"{y_value:.2f}",
                ha="center",
                va="bottom",
            )

        plt.rcParams["font.family"] = "sans-serif"

        plt.tight_layout()
        plt.show()

Functions

__str__() -> str

Format as a pretty string.

Example
print(mar_results)
# MeanAverageRecallResult:
# Metric target:    MetricTarget.BOXES
# mAR @ 1:    0.1362
# mAR @ 10:   0.4239
# mAR @ 100:  0.5241
# max detections: [1  10 100]
# IoU thresh:     [0.5  0.55  0.6  ...]
# mAR per class:
# 0: [0.78571  0.78571  0.78571  ...]
# ...
# Small objects: ...
# Medium objects: ...
# Large objects: ...
Source code in src/supervision/metrics/mean_average_recall.py
def __str__(self) -> str:
    """
    Format as a pretty string.

    Example:
        ```python
        print(mar_results)
        # MeanAverageRecallResult:
        # Metric target:    MetricTarget.BOXES
        # mAR @ 1:    0.1362
        # mAR @ 10:   0.4239
        # mAR @ 100:  0.5241
        # max detections: [1  10 100]
        # IoU thresh:     [0.5  0.55  0.6  ...]
        # mAR per class:
        # 0: [0.78571  0.78571  0.78571  ...]
        # ...
        # Small objects: ...
        # Medium objects: ...
        # Large objects: ...
        ```
    """
    out_str = (
        f"{self.__class__.__name__}:\n"
        f"Metric target:  {self.metric_target}\n"
        f"mAR @ 1:    {self.mAR_at_1:.4f}\n"
        f"mAR @ 10:   {self.mAR_at_10:.4f}\n"
        f"mAR @ 100:  {self.mAR_at_100:.4f}\n"
        f"max detections: {self.max_detections}\n"
        f"IoU thresh:     {self.iou_thresholds}\n"
        f"mAR per class:\n"
    )
    if self.recall_per_class.size == 0:
        out_str += "  No results\n"
    for class_id, recall_of_class in zip(
        self.matched_classes, self.recall_per_class
    ):
        out_str += f"  {class_id}: {recall_of_class}\n"

    indent = "  "
    if self.small_objects is not None:
        indented = indent + str(self.small_objects).replace("\n", f"\n{indent}")
        out_str += f"\nSmall objects:\n{indented}"
    if self.medium_objects is not None:
        indented = indent + str(self.medium_objects).replace("\n", f"\n{indent}")
        out_str += f"\nMedium objects:\n{indented}"
    if self.large_objects is not None:
        indented = indent + str(self.large_objects).replace("\n", f"\n{indent}")
        out_str += f"\nLarge objects:\n{indented}"

    return out_str

plot() -> None

Plot the Mean Average Recall results.

example_plot

Source code in src/supervision/metrics/mean_average_recall.py
def plot(self) -> None:
    """
    Plot the Mean Average Recall results.

    ![example_plot](\
        https://media.roboflow.com/supervision-docs/metrics/mAR_plot_example.png\
        ){ align=center width="800" }
    """
    labels = ["mAR @ 1", "mAR @ 10", "mAR @ 100"]
    values = [self.mAR_at_1, self.mAR_at_10, self.mAR_at_100]
    colors = [LEGACY_COLOR_PALETTE[0]] * 3

    if self.small_objects is not None:
        small_objects = self.small_objects
        labels += ["Small: mAR @ 1", "Small: mAR @ 10", "Small: mAR @ 100"]
        values += [
            small_objects.mAR_at_1,
            small_objects.mAR_at_10,
            small_objects.mAR_at_100,
        ]
        colors += [LEGACY_COLOR_PALETTE[3]] * 3

    if self.medium_objects is not None:
        medium_objects = self.medium_objects
        labels += ["Medium: mAR @ 1", "Medium: mAR @ 10", "Medium: mAR @ 100"]
        values += [
            medium_objects.mAR_at_1,
            medium_objects.mAR_at_10,
            medium_objects.mAR_at_100,
        ]
        colors += [LEGACY_COLOR_PALETTE[2]] * 3

    if self.large_objects is not None:
        large_objects = self.large_objects
        labels += ["Large: mAR @ 1", "Large: mAR @ 10", "Large: mAR @ 100"]
        values += [
            large_objects.mAR_at_1,
            large_objects.mAR_at_10,
            large_objects.mAR_at_100,
        ]
        colors += [LEGACY_COLOR_PALETTE[4]] * 3

    plt.rcParams["font.family"] = "monospace"

    _, ax = plt.subplots(figsize=(10, 6))
    ax.set_ylim(0, 1)
    ax.set_ylabel("Value", fontweight="bold")
    title = (
        f"Mean Average Recall, by Object Size\n(target: {self.metric_target.value})"
    )
    ax.set_title(title, fontweight="bold")

    x_positions = range(len(labels))
    bars = ax.bar(x_positions, values, color=colors, align="center")

    ax.set_xticks(x_positions)
    ax.set_xticklabels(labels, rotation=45, ha="right")

    for bar in bars:
        y_value = bar.get_height()
        ax.text(
            bar.get_x() + bar.get_width() / 2,
            y_value + 0.02,
            f"{y_value:.2f}",
            ha="center",
            va="bottom",
        )

    plt.rcParams["font.family"] = "sans-serif"

    plt.tight_layout()
    plt.show()

to_pandas() -> pd.DataFrame

Convert the result to a pandas DataFrame.

Returns:

Type Description
DataFrame

The result as a DataFrame.

Source code in src/supervision/metrics/mean_average_recall.py
def to_pandas(self) -> pd.DataFrame:
    """
    Convert the result to a pandas DataFrame.

    Returns:
        The result as a DataFrame.
    """
    ensure_pandas_installed()
    import pandas as pd

    pandas_data = {
        "mAR @ 1": self.mAR_at_1,
        "mAR @ 10": self.mAR_at_10,
        "mAR @ 100": self.mAR_at_100,
    }

    if self.small_objects is not None:
        small_objects_df = self.small_objects.to_pandas()
        for key, value in small_objects_df.items():
            pandas_data[f"small_objects_{key}"] = value
    if self.medium_objects is not None:
        medium_objects_df = self.medium_objects.to_pandas()
        for key, value in medium_objects_df.items():
            pandas_data[f"medium_objects_{key}"] = value
    if self.large_objects is not None:
        large_objects_df = self.large_objects.to_pandas()
        for key, value in large_objects_df.items():
            pandas_data[f"large_objects_{key}"] = value

    return pd.DataFrame(pandas_data, index=[0])

Comments