Skip to content

F1 Score

Bases: Metric

F1 Score is a metric used to evaluate object detection models. It is the harmonic mean of precision and recall, calculated at different IoU thresholds.

In simple terms, F1 Score is a measure of a model's balance between precision and recall (accuracy and completeness), calculated as:

F1 = 2 * (precision * recall) / (precision + recall)

Example
import supervision as sv
from supervision.metrics import F1Score

predictions = sv.Detections(...)
targets = sv.Detections(...)

f1_metric = F1Score()
f1_result = f1_metric.update(predictions, targets).compute()

print(f1_result.f1_50)
# 0.7618

print(f1_result)
# F1ScoreResult:
# Metric target: MetricTarget.BOXES
# Averaging method: AveragingMethod.WEIGHTED
# F1 @ 50:     0.7618
# F1 @ 75:     0.7487
# F1 @ thresh: [0.76175  0.76068  0.76068]
# IoU thresh:  [0.5  0.55  0.6  ...]
# F1 per class:
# 0: [0.70968  0.70968  0.70968  ...]
# ...
# Small objects: ...
# Medium objects: ...
# Large objects: ...

f1_result.plot()

example_plot

Source code in supervision/metrics/f1_score.py
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
class F1Score(Metric):
    """
    F1 Score is a metric used to evaluate object detection models. It is the harmonic
    mean of precision and recall, calculated at different IoU thresholds.

    In simple terms, F1 Score is a measure of a model's balance between precision and
    recall (accuracy and completeness), calculated as:

    `F1 = 2 * (precision * recall) / (precision + recall)`

    Example:
        ```python
        import supervision as sv
        from supervision.metrics import F1Score

        predictions = sv.Detections(...)
        targets = sv.Detections(...)

        f1_metric = F1Score()
        f1_result = f1_metric.update(predictions, targets).compute()

        print(f1_result.f1_50)
        # 0.7618

        print(f1_result)
        # F1ScoreResult:
        # Metric target: MetricTarget.BOXES
        # Averaging method: AveragingMethod.WEIGHTED
        # F1 @ 50:     0.7618
        # F1 @ 75:     0.7487
        # F1 @ thresh: [0.76175  0.76068  0.76068]
        # IoU thresh:  [0.5  0.55  0.6  ...]
        # F1 per class:
        # 0: [0.70968  0.70968  0.70968  ...]
        # ...
        # Small objects: ...
        # Medium objects: ...
        # Large objects: ...

        f1_result.plot()
        ```

    ![example_plot](\
        https://media.roboflow.com/supervision-docs/metrics/f1_plot_example.png\
        ){ align=center width="800" }
    """

    def __init__(
        self,
        metric_target: MetricTarget = MetricTarget.BOXES,
        averaging_method: AveragingMethod = AveragingMethod.WEIGHTED,
    ):
        """
        Initialize the F1Score metric.

        Args:
            metric_target (MetricTarget): The type of detection data to use.
            averaging_method (AveragingMethod): The averaging method used to compute the
                F1 scores. Determines how the F1 scores are aggregated across classes.
        """
        self._metric_target = metric_target
        self.averaging_method = averaging_method

        self._predictions_list: List[Detections] = []
        self._targets_list: List[Detections] = []

    def reset(self) -> None:
        """
        Reset the metric to its initial state, clearing all stored data.
        """
        self._predictions_list = []
        self._targets_list = []

    def update(
        self,
        predictions: Union[Detections, List[Detections]],
        targets: Union[Detections, List[Detections]],
    ) -> F1Score:
        """
        Add new predictions and targets to the metric, but do not compute the result.

        Args:
            predictions (Union[Detections, List[Detections]]): The predicted detections.
            targets (Union[Detections, List[Detections]]): The target detections.

        Returns:
            (F1Score): The updated metric instance.
        """
        if not isinstance(predictions, list):
            predictions = [predictions]
        if not isinstance(targets, list):
            targets = [targets]

        if len(predictions) != len(targets):
            raise ValueError(
                f"The number of predictions ({len(predictions)}) and"
                f" targets ({len(targets)}) during the update must be the same."
            )

        self._predictions_list.extend(predictions)
        self._targets_list.extend(targets)

        return self

    def compute(self) -> F1ScoreResult:
        """
        Calculate the F1 score metric based on the stored predictions and ground-truth
        data, at different IoU thresholds.

        Returns:
            (F1ScoreResult): The F1 score metric result.
        """
        result = self._compute(self._predictions_list, self._targets_list)

        small_predictions, small_targets = self._filter_predictions_and_targets_by_size(
            self._predictions_list, self._targets_list, ObjectSizeCategory.SMALL
        )
        result.small_objects = self._compute(small_predictions, small_targets)

        medium_predictions, medium_targets = (
            self._filter_predictions_and_targets_by_size(
                self._predictions_list, self._targets_list, ObjectSizeCategory.MEDIUM
            )
        )
        result.medium_objects = self._compute(medium_predictions, medium_targets)

        large_predictions, large_targets = self._filter_predictions_and_targets_by_size(
            self._predictions_list, self._targets_list, ObjectSizeCategory.LARGE
        )
        result.large_objects = self._compute(large_predictions, large_targets)

        return result

    def _compute(
        self, predictions_list: List[Detections], targets_list: List[Detections]
    ) -> F1ScoreResult:
        iou_thresholds = np.linspace(0.5, 0.95, 10)
        stats = []

        for predictions, targets in zip(predictions_list, targets_list):
            prediction_contents = self._detections_content(predictions)
            target_contents = self._detections_content(targets)

            if len(targets) > 0:
                if len(predictions) == 0:
                    stats.append(
                        (
                            np.zeros((0, iou_thresholds.size), dtype=bool),
                            np.zeros((0,), dtype=np.float32),
                            np.zeros((0,), dtype=int),
                            targets.class_id,
                        )
                    )

                else:
                    if self._metric_target == MetricTarget.BOXES:
                        iou = box_iou_batch(target_contents, prediction_contents)
                    elif self._metric_target == MetricTarget.MASKS:
                        iou = mask_iou_batch(target_contents, prediction_contents)
                    elif self._metric_target == MetricTarget.ORIENTED_BOUNDING_BOXES:
                        iou = oriented_box_iou_batch(
                            target_contents, prediction_contents
                        )
                    else:
                        raise ValueError(
                            "Unsupported metric target for IoU calculation"
                        )

                    matches = self._match_detection_batch(
                        predictions.class_id, targets.class_id, iou, iou_thresholds
                    )
                    stats.append(
                        (
                            matches,
                            predictions.confidence,
                            predictions.class_id,
                            targets.class_id,
                        )
                    )

        if not stats:
            return F1ScoreResult(
                metric_target=self._metric_target,
                averaging_method=self.averaging_method,
                f1_scores=np.zeros(iou_thresholds.shape[0]),
                f1_per_class=np.zeros((0, iou_thresholds.shape[0])),
                iou_thresholds=iou_thresholds,
                matched_classes=np.array([], dtype=int),
                small_objects=None,
                medium_objects=None,
                large_objects=None,
            )

        concatenated_stats = [np.concatenate(items, 0) for items in zip(*stats)]
        f1_scores, f1_per_class, unique_classes = self._compute_f1_for_classes(
            *concatenated_stats
        )

        return F1ScoreResult(
            metric_target=self._metric_target,
            averaging_method=self.averaging_method,
            f1_scores=f1_scores,
            f1_per_class=f1_per_class,
            iou_thresholds=iou_thresholds,
            matched_classes=unique_classes,
            small_objects=None,
            medium_objects=None,
            large_objects=None,
        )

    def _compute_f1_for_classes(
        self,
        matches: np.ndarray,
        prediction_confidence: np.ndarray,
        prediction_class_ids: np.ndarray,
        true_class_ids: np.ndarray,
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        sorted_indices = np.argsort(-prediction_confidence)
        matches = matches[sorted_indices]
        prediction_class_ids = prediction_class_ids[sorted_indices]
        unique_classes, class_counts = np.unique(true_class_ids, return_counts=True)

        # Shape: PxTh,P,C,C -> CxThx3
        confusion_matrix = self._compute_confusion_matrix(
            matches, prediction_class_ids, unique_classes, class_counts
        )

        # Shape: CxThx3 -> CxTh
        f1_per_class = self._compute_f1(confusion_matrix)

        # Shape: CxTh -> Th
        if self.averaging_method == AveragingMethod.MACRO:
            f1_scores = np.mean(f1_per_class, axis=0)
        elif self.averaging_method == AveragingMethod.MICRO:
            confusion_matrix_merged = confusion_matrix.sum(0)
            f1_scores = self._compute_f1(confusion_matrix_merged)
        elif self.averaging_method == AveragingMethod.WEIGHTED:
            class_counts = class_counts.astype(np.float32)
            f1_scores = np.average(f1_per_class, axis=0, weights=class_counts)

        return f1_scores, f1_per_class, unique_classes

    @staticmethod
    def _match_detection_batch(
        predictions_classes: np.ndarray,
        target_classes: np.ndarray,
        iou: np.ndarray,
        iou_thresholds: np.ndarray,
    ) -> np.ndarray:
        num_predictions, num_iou_levels = (
            predictions_classes.shape[0],
            iou_thresholds.shape[0],
        )
        correct = np.zeros((num_predictions, num_iou_levels), dtype=bool)
        correct_class = target_classes[:, None] == predictions_classes

        for i, iou_level in enumerate(iou_thresholds):
            matched_indices = np.where((iou >= iou_level) & correct_class)

            if matched_indices[0].shape[0]:
                combined_indices = np.stack(matched_indices, axis=1)
                iou_values = iou[matched_indices][:, None]
                matches = np.hstack([combined_indices, iou_values])

                if matched_indices[0].shape[0] > 1:
                    matches = matches[matches[:, 2].argsort()[::-1]]
                    matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
                    matches = matches[np.unique(matches[:, 0], return_index=True)[1]]

                correct[matches[:, 1].astype(int), i] = True

        return correct

    @staticmethod
    def _compute_confusion_matrix(
        sorted_matches: np.ndarray,
        sorted_prediction_class_ids: np.ndarray,
        unique_classes: np.ndarray,
        class_counts: np.ndarray,
    ) -> np.ndarray:
        """
        Compute the confusion matrix for each class and IoU threshold.

        Assumes the matches and prediction_class_ids are sorted by confidence
        in descending order.

        Arguments:
            sorted_matches: np.ndarray, bool, shape (P, Th), that is True
                if the prediction is a true positive at the given IoU threshold.
            sorted_prediction_class_ids: np.ndarray, int, shape (P,), containing
                the class id for each prediction.
            unique_classes: np.ndarray, int, shape (C,), containing the unique
                class ids.
            class_counts: np.ndarray, int, shape (C,), containing the number
                of true instances for each class.

        Returns:
            np.ndarray, shape (C, Th, 3), containing the true positives, false
                positives, and false negatives for each class and IoU threshold.
        """

        num_thresholds = sorted_matches.shape[1]
        num_classes = unique_classes.shape[0]

        confusion_matrix = np.zeros((num_classes, num_thresholds, 3))
        for class_idx, class_id in enumerate(unique_classes):
            is_class = sorted_prediction_class_ids == class_id
            num_true = class_counts[class_idx]
            num_predictions = is_class.sum()

            if num_predictions == 0:
                true_positives = np.zeros(num_thresholds)
                false_positives = np.zeros(num_thresholds)
                false_negatives = np.full(num_thresholds, num_true)
            elif num_true == 0:
                true_positives = np.zeros(num_thresholds)
                false_positives = np.full(num_thresholds, num_predictions)
                false_negatives = np.zeros(num_thresholds)
            else:
                true_positives = sorted_matches[is_class].sum(0)
                false_positives = (1 - sorted_matches[is_class]).sum(0)
                false_negatives = num_true - true_positives
            confusion_matrix[class_idx] = np.stack(
                [true_positives, false_positives, false_negatives], axis=1
            )

        return confusion_matrix

    @staticmethod
    def _compute_f1(confusion_matrix: np.ndarray) -> np.ndarray:
        """
        Broadcastable function, computing the F1 score from the confusion matrix.

        Arguments:
            confusion_matrix: np.ndarray, shape (N, ..., 3), where the last dimension
                contains the true positives, false positives, and false negatives.

        Returns:
            np.ndarray, shape (N, ...), containing the F1 score for each element.
        """
        if not confusion_matrix.shape[-1] == 3:
            raise ValueError(
                f"Confusion matrix must have shape (..., 3), got "
                f"{confusion_matrix.shape}"
            )
        true_positives = confusion_matrix[..., 0]
        false_positives = confusion_matrix[..., 1]
        false_negatives = confusion_matrix[..., 2]

        # Alternate formula, avoids multiple zero division checks
        denominator = 2 * true_positives + false_positives + false_negatives
        f1_score = np.where(denominator == 0, 0, 2 * true_positives / denominator)

        return f1_score

    def _detections_content(self, detections: Detections) -> np.ndarray:
        """Return boxes, masks or oriented bounding boxes from detections."""
        if self._metric_target == MetricTarget.BOXES:
            return detections.xyxy
        if self._metric_target == MetricTarget.MASKS:
            return (
                detections.mask
                if detections.mask is not None
                else self._make_empty_content()
            )
        if self._metric_target == MetricTarget.ORIENTED_BOUNDING_BOXES:
            obb = detections.data.get(ORIENTED_BOX_COORDINATES)
            if obb is not None and len(obb) > 0:
                return np.array(obb, dtype=np.float32)
            return self._make_empty_content()
        raise ValueError(f"Invalid metric target: {self._metric_target}")

    def _make_empty_content(self) -> np.ndarray:
        if self._metric_target == MetricTarget.BOXES:
            return np.empty((0, 4), dtype=np.float32)
        if self._metric_target == MetricTarget.MASKS:
            return np.empty((0, 0, 0), dtype=bool)
        if self._metric_target == MetricTarget.ORIENTED_BOUNDING_BOXES:
            return np.empty((0, 4, 2), dtype=np.float32)
        raise ValueError(f"Invalid metric target: {self._metric_target}")

    def _filter_detections_by_size(
        self, detections: Detections, size_category: ObjectSizeCategory
    ) -> Detections:
        """Return a copy of detections with contents filtered by object size."""
        new_detections = deepcopy(detections)
        if detections.is_empty() or size_category == ObjectSizeCategory.ANY:
            return new_detections

        sizes = get_detection_size_category(new_detections, self._metric_target)
        size_mask = sizes == size_category.value

        new_detections.xyxy = new_detections.xyxy[size_mask]
        if new_detections.mask is not None:
            new_detections.mask = new_detections.mask[size_mask]
        if new_detections.class_id is not None:
            new_detections.class_id = new_detections.class_id[size_mask]
        if new_detections.confidence is not None:
            new_detections.confidence = new_detections.confidence[size_mask]
        if new_detections.tracker_id is not None:
            new_detections.tracker_id = new_detections.tracker_id[size_mask]
        if new_detections.data is not None:
            for key, value in new_detections.data.items():
                new_detections.data[key] = np.array(value)[size_mask]

        return new_detections

    def _filter_predictions_and_targets_by_size(
        self,
        predictions_list: List[Detections],
        targets_list: List[Detections],
        size_category: ObjectSizeCategory,
    ) -> Tuple[List[Detections], List[Detections]]:
        """
        Filter predictions and targets by object size category.
        """
        new_predictions_list = []
        new_targets_list = []
        for predictions, targets in zip(predictions_list, targets_list):
            new_predictions_list.append(
                self._filter_detections_by_size(predictions, size_category)
            )
            new_targets_list.append(
                self._filter_detections_by_size(targets, size_category)
            )
        return new_predictions_list, new_targets_list

Functions

__init__(metric_target=MetricTarget.BOXES, averaging_method=AveragingMethod.WEIGHTED)

Initialize the F1Score metric.

Parameters:

Name Type Description Default
metric_target MetricTarget

The type of detection data to use.

BOXES
averaging_method AveragingMethod

The averaging method used to compute the F1 scores. Determines how the F1 scores are aggregated across classes.

WEIGHTED
Source code in supervision/metrics/f1_score.py
def __init__(
    self,
    metric_target: MetricTarget = MetricTarget.BOXES,
    averaging_method: AveragingMethod = AveragingMethod.WEIGHTED,
):
    """
    Initialize the F1Score metric.

    Args:
        metric_target (MetricTarget): The type of detection data to use.
        averaging_method (AveragingMethod): The averaging method used to compute the
            F1 scores. Determines how the F1 scores are aggregated across classes.
    """
    self._metric_target = metric_target
    self.averaging_method = averaging_method

    self._predictions_list: List[Detections] = []
    self._targets_list: List[Detections] = []

compute()

Calculate the F1 score metric based on the stored predictions and ground-truth data, at different IoU thresholds.

Returns:

Type Description
F1ScoreResult

The F1 score metric result.

Source code in supervision/metrics/f1_score.py
def compute(self) -> F1ScoreResult:
    """
    Calculate the F1 score metric based on the stored predictions and ground-truth
    data, at different IoU thresholds.

    Returns:
        (F1ScoreResult): The F1 score metric result.
    """
    result = self._compute(self._predictions_list, self._targets_list)

    small_predictions, small_targets = self._filter_predictions_and_targets_by_size(
        self._predictions_list, self._targets_list, ObjectSizeCategory.SMALL
    )
    result.small_objects = self._compute(small_predictions, small_targets)

    medium_predictions, medium_targets = (
        self._filter_predictions_and_targets_by_size(
            self._predictions_list, self._targets_list, ObjectSizeCategory.MEDIUM
        )
    )
    result.medium_objects = self._compute(medium_predictions, medium_targets)

    large_predictions, large_targets = self._filter_predictions_and_targets_by_size(
        self._predictions_list, self._targets_list, ObjectSizeCategory.LARGE
    )
    result.large_objects = self._compute(large_predictions, large_targets)

    return result

reset()

Reset the metric to its initial state, clearing all stored data.

Source code in supervision/metrics/f1_score.py
def reset(self) -> None:
    """
    Reset the metric to its initial state, clearing all stored data.
    """
    self._predictions_list = []
    self._targets_list = []

update(predictions, targets)

Add new predictions and targets to the metric, but do not compute the result.

Parameters:

Name Type Description Default
predictions Union[Detections, List[Detections]]

The predicted detections.

required
targets Union[Detections, List[Detections]]

The target detections.

required

Returns:

Type Description
F1Score

The updated metric instance.

Source code in supervision/metrics/f1_score.py
def update(
    self,
    predictions: Union[Detections, List[Detections]],
    targets: Union[Detections, List[Detections]],
) -> F1Score:
    """
    Add new predictions and targets to the metric, but do not compute the result.

    Args:
        predictions (Union[Detections, List[Detections]]): The predicted detections.
        targets (Union[Detections, List[Detections]]): The target detections.

    Returns:
        (F1Score): The updated metric instance.
    """
    if not isinstance(predictions, list):
        predictions = [predictions]
    if not isinstance(targets, list):
        targets = [targets]

    if len(predictions) != len(targets):
        raise ValueError(
            f"The number of predictions ({len(predictions)}) and"
            f" targets ({len(targets)}) during the update must be the same."
        )

    self._predictions_list.extend(predictions)
    self._targets_list.extend(targets)

    return self

The results of the F1 score metric calculation.

Defaults to 0 if no detections or targets were provided.

Attributes:

Name Type Description
metric_target MetricTarget

the type of data used for the metric - boxes, masks or oriented bounding boxes.

averaging_method AveragingMethod

the averaging method used to compute the F1 scores. Determines how the F1 scores are aggregated across classes.

f1_50 float

the F1 score at IoU threshold of 0.5.

f1_75 float

the F1 score at IoU threshold of 0.75.

f1_scores ndarray

the F1 scores at each IoU threshold. Shape: (num_iou_thresholds,)

f1_per_class ndarray

the F1 scores per class and IoU threshold. Shape: (num_target_classes, num_iou_thresholds)

iou_thresholds ndarray

the IoU thresholds used in the calculations.

matched_classes ndarray

the class IDs of all matched classes. Corresponds to the rows of f1_per_class.

small_objects Optional[F1ScoreResult]

the F1 metric results for small objects (area < 32²).

medium_objects Optional[F1ScoreResult]

the F1 metric results for medium objects (32² ≤ area < 96²).

large_objects Optional[F1ScoreResult]

the F1 metric results for large objects (area ≥ 96²).

Source code in supervision/metrics/f1_score.py
@dataclass
class F1ScoreResult:
    """
    The results of the F1 score metric calculation.

    Defaults to `0` if no detections or targets were provided.

    Attributes:
        metric_target (MetricTarget): the type of data used for the metric -
            boxes, masks or oriented bounding boxes.
        averaging_method (AveragingMethod): the averaging method used to compute the
            F1 scores. Determines how the F1 scores are aggregated across classes.
        f1_50 (float): the F1 score at IoU threshold of `0.5`.
        f1_75 (float): the F1 score at IoU threshold of `0.75`.
        f1_scores (np.ndarray): the F1 scores at each IoU threshold.
            Shape: `(num_iou_thresholds,)`
        f1_per_class (np.ndarray): the F1 scores per class and IoU threshold.
            Shape: `(num_target_classes, num_iou_thresholds)`
        iou_thresholds (np.ndarray): the IoU thresholds used in the calculations.
        matched_classes (np.ndarray): the class IDs of all matched classes.
            Corresponds to the rows of `f1_per_class`.
        small_objects (Optional[F1ScoreResult]): the F1 metric results
            for small objects (area < 32²).
        medium_objects (Optional[F1ScoreResult]): the F1 metric results
            for medium objects (32² ≤ area < 96²).
        large_objects (Optional[F1ScoreResult]): the F1 metric results
            for large objects (area ≥ 96²).
    """

    metric_target: MetricTarget
    averaging_method: AveragingMethod

    @property
    def f1_50(self) -> float:
        return self.f1_scores[0]

    @property
    def f1_75(self) -> float:
        return self.f1_scores[5]

    f1_scores: np.ndarray
    f1_per_class: np.ndarray
    iou_thresholds: np.ndarray
    matched_classes: np.ndarray

    small_objects: Optional[F1ScoreResult]
    medium_objects: Optional[F1ScoreResult]
    large_objects: Optional[F1ScoreResult]

    def __str__(self) -> str:
        """
        Format as a pretty string.

        Example:
            ```python
            print(f1_result)
            # F1ScoreResult:
            # Metric target: MetricTarget.BOXES
            # Averaging method: AveragingMethod.WEIGHTED
            # F1 @ 50:     0.7618
            # F1 @ 75:     0.7487
            # F1 @ thresh: [0.76175  0.76068  0.76068]
            # IoU thresh:  [0.5  0.55  0.6  ...]
            # F1 per class:
            # 0: [0.70968  0.70968  0.70968  ...]
            # ...
            # Small objects: ...
            # Medium objects: ...
            # Large objects: ...
            ```
        """
        out_str = (
            f"{self.__class__.__name__}:\n"
            f"Metric target: {self.metric_target}\n"
            f"Averaging method: {self.averaging_method}\n"
            f"F1 @ 50:     {self.f1_50:.4f}\n"
            f"F1 @ 75:     {self.f1_75:.4f}\n"
            f"F1 @ thresh: {self.f1_scores}\n"
            f"IoU thresh:  {self.iou_thresholds}\n"
            f"F1 per class:\n"
        )
        if self.f1_per_class.size == 0:
            out_str += "  No results\n"
        for class_id, f1_of_class in zip(self.matched_classes, self.f1_per_class):
            out_str += f"  {class_id}: {f1_of_class}\n"

        indent = "  "
        if self.small_objects is not None:
            indented = indent + str(self.small_objects).replace("\n", f"\n{indent}")
            out_str += f"\nSmall objects:\n{indented}"
        if self.medium_objects is not None:
            indented = indent + str(self.medium_objects).replace("\n", f"\n{indent}")
            out_str += f"\nMedium objects:\n{indented}"
        if self.large_objects is not None:
            indented = indent + str(self.large_objects).replace("\n", f"\n{indent}")
            out_str += f"\nLarge objects:\n{indented}"

        return out_str

    def to_pandas(self) -> "pd.DataFrame":
        """
        Convert the result to a pandas DataFrame.

        Returns:
            (pd.DataFrame): The result as a DataFrame.
        """
        ensure_pandas_installed()
        import pandas as pd

        pandas_data = {
            "F1@50": self.f1_50,
            "F1@75": self.f1_75,
        }

        if self.small_objects is not None:
            small_objects_df = self.small_objects.to_pandas()
            for key, value in small_objects_df.items():
                pandas_data[f"small_objects_{key}"] = value
        if self.medium_objects is not None:
            medium_objects_df = self.medium_objects.to_pandas()
            for key, value in medium_objects_df.items():
                pandas_data[f"medium_objects_{key}"] = value
        if self.large_objects is not None:
            large_objects_df = self.large_objects.to_pandas()
            for key, value in large_objects_df.items():
                pandas_data[f"large_objects_{key}"] = value

        return pd.DataFrame(pandas_data, index=[0])

    def plot(self):
        """
        Plot the F1 results.

        ![example_plot](\
            https://media.roboflow.com/supervision-docs/metrics/f1_plot_example.png\
            ){ align=center width="800" }
        """

        labels = ["F1@50", "F1@75"]
        values = [self.f1_50, self.f1_75]
        colors = [LEGACY_COLOR_PALETTE[0]] * 2

        if self.small_objects is not None:
            small_objects = self.small_objects
            labels += ["Small: F1@50", "Small: F1@75"]
            values += [small_objects.f1_50, small_objects.f1_75]
            colors += [LEGACY_COLOR_PALETTE[3]] * 2

        if self.medium_objects is not None:
            medium_objects = self.medium_objects
            labels += ["Medium: F1@50", "Medium: F1@75"]
            values += [medium_objects.f1_50, medium_objects.f1_75]
            colors += [LEGACY_COLOR_PALETTE[2]] * 2

        if self.large_objects is not None:
            large_objects = self.large_objects
            labels += ["Large: F1@50", "Large: F1@75"]
            values += [large_objects.f1_50, large_objects.f1_75]
            colors += [LEGACY_COLOR_PALETTE[4]] * 2

        plt.rcParams["font.family"] = "monospace"

        _, ax = plt.subplots(figsize=(10, 6))
        ax.set_ylim(0, 1)
        ax.set_ylabel("Value", fontweight="bold")
        title = (
            f"F1 Score, by Object Size"
            f"\n(target: {self.metric_target.value},"
            f" averaging: {self.averaging_method.value})"
        )
        ax.set_title(title, fontweight="bold")

        x_positions = range(len(labels))
        bars = ax.bar(x_positions, values, color=colors, align="center")

        ax.set_xticks(x_positions)
        ax.set_xticklabels(labels, rotation=45, ha="right")

        for bar in bars:
            y_value = bar.get_height()
            ax.text(
                bar.get_x() + bar.get_width() / 2,
                y_value + 0.02,
                f"{y_value:.2f}",
                ha="center",
                va="bottom",
            )

        plt.rcParams["font.family"] = "sans-serif"

        plt.tight_layout()
        plt.show()

Functions

__str__()

Format as a pretty string.

Example
print(f1_result)
# F1ScoreResult:
# Metric target: MetricTarget.BOXES
# Averaging method: AveragingMethod.WEIGHTED
# F1 @ 50:     0.7618
# F1 @ 75:     0.7487
# F1 @ thresh: [0.76175  0.76068  0.76068]
# IoU thresh:  [0.5  0.55  0.6  ...]
# F1 per class:
# 0: [0.70968  0.70968  0.70968  ...]
# ...
# Small objects: ...
# Medium objects: ...
# Large objects: ...
Source code in supervision/metrics/f1_score.py
def __str__(self) -> str:
    """
    Format as a pretty string.

    Example:
        ```python
        print(f1_result)
        # F1ScoreResult:
        # Metric target: MetricTarget.BOXES
        # Averaging method: AveragingMethod.WEIGHTED
        # F1 @ 50:     0.7618
        # F1 @ 75:     0.7487
        # F1 @ thresh: [0.76175  0.76068  0.76068]
        # IoU thresh:  [0.5  0.55  0.6  ...]
        # F1 per class:
        # 0: [0.70968  0.70968  0.70968  ...]
        # ...
        # Small objects: ...
        # Medium objects: ...
        # Large objects: ...
        ```
    """
    out_str = (
        f"{self.__class__.__name__}:\n"
        f"Metric target: {self.metric_target}\n"
        f"Averaging method: {self.averaging_method}\n"
        f"F1 @ 50:     {self.f1_50:.4f}\n"
        f"F1 @ 75:     {self.f1_75:.4f}\n"
        f"F1 @ thresh: {self.f1_scores}\n"
        f"IoU thresh:  {self.iou_thresholds}\n"
        f"F1 per class:\n"
    )
    if self.f1_per_class.size == 0:
        out_str += "  No results\n"
    for class_id, f1_of_class in zip(self.matched_classes, self.f1_per_class):
        out_str += f"  {class_id}: {f1_of_class}\n"

    indent = "  "
    if self.small_objects is not None:
        indented = indent + str(self.small_objects).replace("\n", f"\n{indent}")
        out_str += f"\nSmall objects:\n{indented}"
    if self.medium_objects is not None:
        indented = indent + str(self.medium_objects).replace("\n", f"\n{indent}")
        out_str += f"\nMedium objects:\n{indented}"
    if self.large_objects is not None:
        indented = indent + str(self.large_objects).replace("\n", f"\n{indent}")
        out_str += f"\nLarge objects:\n{indented}"

    return out_str

plot()

Plot the F1 results.

example_plot

Source code in supervision/metrics/f1_score.py
def plot(self):
    """
    Plot the F1 results.

    ![example_plot](\
        https://media.roboflow.com/supervision-docs/metrics/f1_plot_example.png\
        ){ align=center width="800" }
    """

    labels = ["F1@50", "F1@75"]
    values = [self.f1_50, self.f1_75]
    colors = [LEGACY_COLOR_PALETTE[0]] * 2

    if self.small_objects is not None:
        small_objects = self.small_objects
        labels += ["Small: F1@50", "Small: F1@75"]
        values += [small_objects.f1_50, small_objects.f1_75]
        colors += [LEGACY_COLOR_PALETTE[3]] * 2

    if self.medium_objects is not None:
        medium_objects = self.medium_objects
        labels += ["Medium: F1@50", "Medium: F1@75"]
        values += [medium_objects.f1_50, medium_objects.f1_75]
        colors += [LEGACY_COLOR_PALETTE[2]] * 2

    if self.large_objects is not None:
        large_objects = self.large_objects
        labels += ["Large: F1@50", "Large: F1@75"]
        values += [large_objects.f1_50, large_objects.f1_75]
        colors += [LEGACY_COLOR_PALETTE[4]] * 2

    plt.rcParams["font.family"] = "monospace"

    _, ax = plt.subplots(figsize=(10, 6))
    ax.set_ylim(0, 1)
    ax.set_ylabel("Value", fontweight="bold")
    title = (
        f"F1 Score, by Object Size"
        f"\n(target: {self.metric_target.value},"
        f" averaging: {self.averaging_method.value})"
    )
    ax.set_title(title, fontweight="bold")

    x_positions = range(len(labels))
    bars = ax.bar(x_positions, values, color=colors, align="center")

    ax.set_xticks(x_positions)
    ax.set_xticklabels(labels, rotation=45, ha="right")

    for bar in bars:
        y_value = bar.get_height()
        ax.text(
            bar.get_x() + bar.get_width() / 2,
            y_value + 0.02,
            f"{y_value:.2f}",
            ha="center",
            va="bottom",
        )

    plt.rcParams["font.family"] = "sans-serif"

    plt.tight_layout()
    plt.show()

to_pandas()

Convert the result to a pandas DataFrame.

Returns:

Type Description
DataFrame

The result as a DataFrame.

Source code in supervision/metrics/f1_score.py
def to_pandas(self) -> "pd.DataFrame":
    """
    Convert the result to a pandas DataFrame.

    Returns:
        (pd.DataFrame): The result as a DataFrame.
    """
    ensure_pandas_installed()
    import pandas as pd

    pandas_data = {
        "F1@50": self.f1_50,
        "F1@75": self.f1_75,
    }

    if self.small_objects is not None:
        small_objects_df = self.small_objects.to_pandas()
        for key, value in small_objects_df.items():
            pandas_data[f"small_objects_{key}"] = value
    if self.medium_objects is not None:
        medium_objects_df = self.medium_objects.to_pandas()
        for key, value in medium_objects_df.items():
            pandas_data[f"medium_objects_{key}"] = value
    if self.large_objects is not None:
        large_objects_df = self.large_objects.to_pandas()
        for key, value in large_objects_df.items():
            pandas_data[f"large_objects_{key}"] = value

    return pd.DataFrame(pandas_data, index=[0])

Comments