Keypoint Detection¶
The sv.KeyPoints
class in the Supervision library standardizes results from
various keypoint detection and pose estimation models into a consistent format. This
class simplifies data manipulation and filtering, providing a uniform API for
integration with Supervision keypoints annotators.
Use sv.KeyPoints.from_ultralytics
method, which accepts YOLOv8
pose result.
Use sv.KeyPoints.from_inference
method, which accepts Inference pose result.
Use sv.KeyPoints.from_mediapipe
method, which accepts MediaPipe
pose result.
import cv2
import mediapipe as mp
import supervision as sv
image = cv2.imread(<SOURCE_IMAGE_PATH>)
image_height, image_width, _ = image.shape
mediapipe_image = mp.Image(
image_format=mp.ImageFormat.SRGB,
data=cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
options = mp.tasks.vision.PoseLandmarkerOptions(
base_options=mp.tasks.BaseOptions(
model_asset_path="pose_landmarker_heavy.task"
),
running_mode=mp.tasks.vision.RunningMode.IMAGE,
num_poses=2)
PoseLandmarker = mp.tasks.vision.PoseLandmarker
with PoseLandmarker.create_from_options(options) as landmarker:
pose_landmarker_result = landmarker.detect(mediapipe_image)
key_points = sv.KeyPoints.from_mediapipe(
pose_landmarker_result, (image_width, image_height))
Attributes:
Name | Type | Description |
---|---|---|
xy |
ndarray
|
An array of shape |
confidence |
Optional[ndarray]
|
An array of shape
|
class_id |
Optional[ndarray]
|
An array of shape
|
data |
Dict[str, Union[ndarray, List]]
|
A dictionary containing additional
data where each key is a string representing the data type, and the value
is either a NumPy array or a list of corresponding data of length |
Source code in supervision/keypoint/core.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
|
Functions¶
__getitem__(index)
¶
Get a subset of the sv.KeyPoints
object or access an item from its data field.
When provided with an integer, slice, list of integers, or a numpy array, this
method returns a new sv.KeyPoints
object that represents a subset of the
original sv.KeyPoints
. When provided with a string, it accesses the
corresponding item in the data dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
Union[int, slice, List[int], ndarray, str]
|
The index, indices,
or key to access a subset of the |
required |
Returns:
Type | Description |
---|---|
Union[KeyPoints, List, ndarray, None]
|
A subset of the |
Examples:
import supervision as sv
key_points = sv.KeyPoints()
# access the first keypoint using an integer index
key_points[0]
# access the first 10 keypoints using index slice
key_points[0:10]
# access selected keypoints using a list of indices
key_points[[0, 2, 4]]
# access keypoints with selected class_id
key_points[key_points.class_id == 0]
# access keypoints with confidence greater than 0.5
key_points[key_points.confidence > 0.5]
Source code in supervision/keypoint/core.py
__iter__()
¶
Iterates over the Keypoint object and yield a tuple of
(xy, confidence, class_id, data)
for each object detection.
Source code in supervision/keypoint/core.py
__len__()
¶
__setitem__(key, value)
¶
Set a value in the data dictionary of the sv.KeyPoints
object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
str
|
The key in the data dictionary to set. |
required |
value |
Union[ndarray, List]
|
The value to set for the key. |
required |
Examples:
import cv2
import supervision as sv
from ultralytics import YOLO
image = cv2.imread(<SOURCE_IMAGE_PATH>)
model = YOLO('yolov8s.pt')
result = model(image)[0]
keypoints = sv.KeyPoints.from_ultralytics(result)
keypoints['class_name'] = [
model.model.names[class_id]
for class_id
in keypoints.class_id
]
Source code in supervision/keypoint/core.py
as_detections(selected_keypoint_indices=None)
¶
Convert a KeyPoints object to a Detections object. This approximates the bounding box of the detected object by taking the bounding box that fits all keypoints.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
selected_keypoint_indices |
Optional[Iterable[int]]
|
The indices of the keypoints to include in the bounding box calculation. This helps focus on a subset of keypoints, e.g. when some are occluded. Captures all keypoints by default. |
None
|
Returns:
Name | Type | Description |
---|---|---|
detections |
Detections
|
The converted detections object. |
Source code in supervision/keypoint/core.py
empty()
classmethod
¶
Create an empty Keypoints object with no keypoints.
Returns:
Type | Description |
---|---|
KeyPoints
|
An empty |
Examples:
Source code in supervision/keypoint/core.py
from_detectron2(detectron2_results)
classmethod
¶
Create a sv.KeyPoints
object from the
Detectron2 inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detectron2_results |
Any
|
The output of a Detectron2 model containing instances with prediction data. |
required |
Returns:
Type | Description |
---|---|
KeyPoints
|
A |
Example
import cv2
import supervision as sv
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
image = cv2.imread(<SOURCE_IMAGE_PATH>)
cfg = get_cfg()
cfg.merge_from_file(<CONFIG_PATH>)
cfg.MODEL.WEIGHTS = <WEIGHTS_PATH>
predictor = DefaultPredictor(cfg)
result = predictor(image)
keypoints = sv.KeyPoints.from_detectron2(result)
Source code in supervision/keypoint/core.py
from_inference(inference_result)
classmethod
¶
Create a sv.KeyPoints
object from the Roboflow
API inference result or the Inference
package results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inference_result |
(dict, any)
|
The result from the Roboflow API or Inference package containing predictions with keypoints. |
required |
Returns:
Type | Description |
---|---|
KeyPoints
|
A |
Examples:
import cv2
import supervision as sv
from inference import get_model
image = cv2.imread(<SOURCE_IMAGE_PATH>)
model = get_model(model_id=<POSE_MODEL_ID>, api_key=<ROBOFLOW_API_KEY>)
result = model.infer(image)[0]
key_points = sv.KeyPoints.from_inference(result)
import cv2
import supervision as sv
from inference_sdk import InferenceHTTPClient
image = cv2.imread(<SOURCE_IMAGE_PATH>)
client = InferenceHTTPClient(
api_url="https://detect.roboflow.com",
api_key=<ROBOFLOW_API_KEY>
)
result = client.infer(image, model_id=<POSE_MODEL_ID>)
key_points = sv.KeyPoints.from_inference(result)
Source code in supervision/keypoint/core.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|
from_mediapipe(mediapipe_results, resolution_wh)
classmethod
¶
Creates a sv.KeyPoints
instance from a
MediaPipe
pose landmark detection inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mediapipe_results |
Union[PoseLandmarkerResult, FaceLandmarkerResult, SolutionOutputs]
|
The output results from Mediapipe. It support pose and face landmarks
from |
required |
resolution_wh |
Tuple[int, int]
|
A tuple of the form |
required |
Returns:
Type | Description |
---|---|
KeyPoints
|
A |
Tip
Before you start, download model bundles from the MediaPipe website.
Examples:
import cv2
import mediapipe as mp
import supervision as sv
image = cv2.imread(<SOURCE_IMAGE_PATH>)
image_height, image_width, _ = image.shape
mediapipe_image = mp.Image(
image_format=mp.ImageFormat.SRGB,
data=cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
options = mp.tasks.vision.PoseLandmarkerOptions(
base_options=mp.tasks.BaseOptions(
model_asset_path="pose_landmarker_heavy.task"
),
running_mode=mp.tasks.vision.RunningMode.IMAGE,
num_poses=2)
PoseLandmarker = mp.tasks.vision.PoseLandmarker
with PoseLandmarker.create_from_options(options) as landmarker:
pose_landmarker_result = landmarker.detect(mediapipe_image)
key_points = sv.KeyPoints.from_mediapipe(
pose_landmarker_result, (image_width, image_height))
import cv2
import mediapipe as mp
import supervision as sv
image = cv2.imread(<SOURCE_IMAGE_PATH>)
image_height, image_width, _ = image.shape
mediapipe_image = mp.Image(
image_format=mp.ImageFormat.SRGB,
data=cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
options = mp.tasks.vision.FaceLandmarkerOptions(
base_options=mp.tasks.BaseOptions(
model_asset_path="face_landmarker.task"
),
output_face_blendshapes=True,
output_facial_transformation_matrixes=True,
num_faces=2)
FaceLandmarker = mp.tasks.vision.FaceLandmarker
with FaceLandmarker.create_from_options(options) as landmarker:
face_landmarker_result = landmarker.detect(mediapipe_image)
key_points = sv.KeyPoints.from_mediapipe(
face_landmarker_result, (image_width, image_height))
Source code in supervision/keypoint/core.py
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
|
from_ultralytics(ultralytics_results)
classmethod
¶
Creates a sv.KeyPoints
instance from a
YOLOv8 pose inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ultralytics_results |
Keypoints
|
The output Results instance from YOLOv8 |
required |
Returns:
Type | Description |
---|---|
KeyPoints
|
A |
Examples:
import cv2
import supervision as sv
from ultralytics import YOLO
image = cv2.imread(<SOURCE_IMAGE_PATH>)
model = YOLO('yolov8s-pose.pt')
result = model(image)[0]
key_points = sv.KeyPoints.from_ultralytics(result)
Source code in supervision/keypoint/core.py
from_yolo_nas(yolo_nas_results)
classmethod
¶
Create a sv.KeyPoints
instance from a YOLO-NAS
pose inference results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
yolo_nas_results |
ImagePoseEstimationPrediction
|
The output object from YOLO NAS. |
required |
Returns:
Type | Description |
---|---|
KeyPoints
|
A |
Examples:
import cv2
import torch
import supervision as sv
import super_gradients
image = cv2.imread(<SOURCE_IMAGE_PATH>)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = super_gradients.training.models.get(
"yolo_nas_pose_s", pretrained_weights="coco_pose").to(device)
results = model.predict(image, conf=0.1)
key_points = sv.KeyPoints.from_yolo_nas(results)
Source code in supervision/keypoint/core.py
is_empty()
¶
Returns True
if the KeyPoints
object is considered empty.