Keypoint Detection¶
The sv.KeyPoints
class in the Supervision library standardizes results from
various keypoint detection and pose estimation models into a consistent format. This
class simplifies data manipulation and filtering, providing a uniform API for
integration with Supervision annotators.
Use sv.KeyPoints.from_ultralytics
method, which accepts model results.
Attributes:
Name | Type | Description |
---|---|---|
xy |
ndarray
|
An array of shape |
confidence |
Optional[ndarray]
|
An array of shape
|
class_id |
Optional[ndarray]
|
An array of shape
|
data |
Dict[str, Union[ndarray, List]]
|
A dictionary containing additional data where each key is a string representing the data type, and the value is either a NumPy array or a list of corresponding data. |
Source code in supervision/keypoint/core.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
|
Functions¶
__getitem__(index)
¶
Get a subset of the KeyPoints object or access an item from its data field.
When provided with an integer, slice, list of integers, or a numpy array, this method returns a new KeyPoints object that represents a subset of the original keypoints. When provided with a string, it accesses the corresponding item in the data dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
Union[int, slice, List[int], ndarray, str]
|
The index, indices, or key to access a subset of the KeyPoints or an item from the data. |
required |
Returns:
Type | Description |
---|---|
Union[KeyPoints, List, ndarray, None]
|
Union[KeyPoints, Any]: A subset of the KeyPoints object or an item from the data field. |
Example
import supervision as sv
keypoints = sv.KeyPoints()
first_detection = keypoints[0]
first_10_keypoints = keypoints[0:10]
some_keypoints = keypoints[[0, 2, 4]]
class_0_keypoints = keypoints[keypoints.class_id == 0]
high_confidence_keypoints = keypoints[keypoints.confidence > 0.5]
feature_vector = keypoints['feature_vector']
Source code in supervision/keypoint/core.py
__iter__()
¶
Iterates over the Keypoint object and yield a tuple of
(xy, confidence, class_id, data)
for each keypoint detection.
Source code in supervision/keypoint/core.py
__len__()
¶
__setitem__(key, value)
¶
Set a value in the data dictionary of the KeyPoints object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
str
|
The key in the data dictionary to set. |
required |
value |
Union[ndarray, List]
|
The value to set for the key. |
required |
Example
Source code in supervision/keypoint/core.py
empty()
classmethod
¶
Create an empty Keypoints object with no keypoints.
Returns:
Type | Description |
---|---|
KeyPoints
|
An empty Keypoints object. |
Source code in supervision/keypoint/core.py
from_inference(inference_result)
classmethod
¶
Create a sv.KeyPoints
object from the Roboflow
API inference result or the Inference
package results. When a keypoint detection model is used, this method
extracts the keypoint coordinates, class IDs, confidences, and class names.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inference_result |
(dict, any)
|
The result from the Roboflow API or Inference package containing predictions with keypoints. |
required |
Returns:
Type | Description |
---|---|
KeyPoints
|
A KeyPoints object containing the keypoint coordinates, class IDs, and confidences of each keypoint. |
Example
import cv2
import supervision as sv
from inference import get_model
image = cv2.imread(<SOURCE_IMAGE_PATH>)
model = get_model(model_id=<POSE_MODEL_ID>, api_key=<ROBOFLOW_API_KEY>)
result = model.infer(image)[0]
key_points = sv.KeyPoints.from_inference(result)
import cv2
import supervision as sv
from inference_sdk import InferenceHTTPClient
image = cv2.imread(<SOURCE_IMAGE_PATH>)
client = InferenceHTTPClient(
api_url="https://detect.roboflow.com",
api_key=<ROBOFLOW_API_KEY>
)
result = client.infer(image, model_id=<POSE_MODEL_ID>)
key_points = sv.KeyPoints.from_inference(result)
Source code in supervision/keypoint/core.py
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
|
from_ultralytics(ultralytics_results)
classmethod
¶
Creates a KeyPoints instance from a YOLOv8 inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ultralytics_results |
Keypoints
|
The output Results instance from YOLOv8 |
required |
Returns:
Name | Type | Description |
---|---|---|
KeyPoints |
KeyPoints
|
A new KeyPoints object. |
Example
Source code in supervision/keypoint/core.py
from_yolo_nas(yolo_nas_results)
classmethod
¶
Create a KeyPoints instance from a YOLO NAS results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
yolo_nas_results |
ImagePoseEstimationPrediction
|
The output object from YOLO NAS. |
required |
Returns:
Name | Type | Description |
---|---|---|
KeyPoints |
KeyPoints
|
A new KeyPoints object. |
Example
import cv2
import torch
import supervision as sv
import super_gradients
image = cv2.imread(<SOURCE_IMAGE_PATH>)
device = "cuda" if torch.cuda.is_available() else "cpu"
yolo_nas = super_gradients.training.models.get(
"yolo_nas_pose_s", pretrained_weights="coco_pose").to(device)
results = yolo_nas.predict(image, conf=0.1)
keypoints = sv.KeyPoints.from_yolo_nas(results)