Core
Classifications¶
Source code in supervision/classification/core.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
__len__()
¶
Returns the number of classifications.
Source code in supervision/classification/core.py
42 43 44 45 46 |
|
__post_init__()
¶
Validate the classification inputs.
Source code in supervision/classification/core.py
33 34 35 36 37 38 39 40 |
|
from_clip(clip_results)
classmethod
¶
Creates a Classifications instance from a clip inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
clip_results |
ndarray
|
The inference result from clip model. |
required |
Returns:
Name | Type | Description |
---|---|---|
Classifications |
Classifications
|
A new Classifications object. |
Example
>>> from PIL import Image
>>> import clip
>>> import supervision as sv
>>> model, preprocess = clip.load('ViT-B/32')
>>> image = cv2.imread(SOURCE_IMAGE_PATH)
>>> image = preprocess(image).unsqueeze(0)
>>> text = clip.tokenize(["a diagram", "a dog", "a cat"])
>>> output, _ = model(image, text)
>>> classifications = sv.Classifications.from_clip(output)
Source code in supervision/classification/core.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
|
from_timm(timm_results)
classmethod
¶
Creates a Classifications instance from a timm inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
timm_results |
The inference result from timm model. |
required |
Returns:
Name | Type | Description |
---|---|---|
Classifications |
Classifications
|
A new Classifications object. |
Example
>>> from PIL import Image
>>> import timm
>>> from timm.data import resolve_data_config, create_transform
>>> import supervision as sv
>>> model = timm.create_model(
... model_name='hf-hub:nateraw/resnet50-oxford-iiit-pet',
... pretrained=True
... ).eval()
>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)
>>> image = Image.open(SOURCE_IMAGE_PATH).convert('RGB')
>>> x = transform(image).unsqueeze(0)
>>> output = model(x)
>>> classifications = sv.Classifications.from_timm(output)
Source code in supervision/classification/core.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
|
from_ultralytics(ultralytics_results)
classmethod
¶
Creates a Classifications instance from a ultralytics inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ultralytics_results |
Results
|
The inference result from ultralytics model. |
required |
Returns:
Name | Type | Description |
---|---|---|
Classifications |
Classifications
|
A new Classifications object. |
Example
>>> import cv2
>>> from ultralytics import YOLO
>>> import supervision as sv
>>> image = cv2.imread(SOURCE_IMAGE_PATH)
>>> model = YOLO('yolov8n-cls.pt')
>>> output = model(image)[0]
>>> classifications = sv.Classifications.from_ultralytics(output)
Source code in supervision/classification/core.py
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
get_top_k(k)
¶
Retrieve the top k class IDs and confidences, ordered in descending order by confidence.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
k |
int
|
The number of top class IDs and confidences to retrieve. |
required |
Returns:
Type | Description |
---|---|
Tuple[ndarray, ndarray]
|
Tuple[np.ndarray, np.ndarray]: A tuple containing the top k class IDs and confidences. |
Example
>>> import supervision as sv
>>> classifications = sv.Classifications(...)
>>> classifications.get_top_k(1)
(array([1]), array([0.9]))
Source code in supervision/classification/core.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|