Skip to content

Line Zone

LineZone

This class is responsible for counting the number of objects that cross a predefined line.

Warning

LineZone uses the tracker_id. Read here to learn how to plug tracking into your inference pipeline.

Attributes:

Name Type Description
in_count int

The number of objects that have crossed the line from outside to inside.

out_count int

The number of objects that have crossed the line from inside to outside.

in_count_per_class Dict[int, int]

Number of objects of each class that have crossed the line from outside to inside.

out_count_per_class Dict[int, int]

Number of objects of each class that have crossed the line from inside to outside.

Example
import supervision as sv
from ultralytics import YOLO

model = YOLO(<SOURCE_MODEL_PATH>)
tracker = sv.ByteTrack()
frames_generator = sv.get_video_frames_generator(<SOURCE_VIDEO_PATH>)
start, end = sv.Point(x=0, y=1080), sv.Point(x=3840, y=1080)
line_zone = sv.LineZone(start=start, end=end)

for frame in frames_generator:
    result = model(frame)[0]
    detections = sv.Detections.from_ultralytics(result)
    detections = tracker.update_with_detections(detections)
    crossed_in, crossed_out = line_zone.trigger(detections)

line_zone.in_count, line_zone.out_count
# 7, 2
Source code in supervision/detection/line_zone.py
class LineZone:
    """
    This class is responsible for counting the number of objects that cross a
    predefined line.

    <video controls>
        <source
            src="https://media.roboflow.com/supervision/cookbooks/count-objects-crossing-the-line-result-1280x720.mp4"
            type="video/mp4">
    </video>

    !!! warning

        LineZone uses the `tracker_id`. Read
        [here](/latest/trackers/) to learn how to plug
        tracking into your inference pipeline.

    Attributes:
        in_count (int): The number of objects that have crossed the line from outside
            to inside.
        out_count (int): The number of objects that have crossed the line from inside
            to outside.
        in_count_per_class (Dict[int, int]): Number of objects of each class that have
            crossed the line from outside to inside.
        out_count_per_class (Dict[int, int]): Number of objects of each class that have
            crossed the line from inside to outside.

    Example:
        ```python
        import supervision as sv
        from ultralytics import YOLO

        model = YOLO(<SOURCE_MODEL_PATH>)
        tracker = sv.ByteTrack()
        frames_generator = sv.get_video_frames_generator(<SOURCE_VIDEO_PATH>)
        start, end = sv.Point(x=0, y=1080), sv.Point(x=3840, y=1080)
        line_zone = sv.LineZone(start=start, end=end)

        for frame in frames_generator:
            result = model(frame)[0]
            detections = sv.Detections.from_ultralytics(result)
            detections = tracker.update_with_detections(detections)
            crossed_in, crossed_out = line_zone.trigger(detections)

        line_zone.in_count, line_zone.out_count
        # 7, 2
        ```
    """

    def __init__(
        self,
        start: Point,
        end: Point,
        triggering_anchors: Iterable[Position] = (
            Position.TOP_LEFT,
            Position.TOP_RIGHT,
            Position.BOTTOM_LEFT,
            Position.BOTTOM_RIGHT,
        ),
        minimum_crossing_threshold: int = 1,
    ):
        """
        Args:
            start (Point): The starting point of the line.
            end (Point): The ending point of the line.
            triggering_anchors (List[sv.Position]): A list of positions
                specifying which anchors of the detections bounding box
                to consider when deciding on whether the detection
                has passed the line counter or not. By default, this
                contains the four corners of the detection's bounding box
            minimum_crossing_threshold (int): Detection needs to be seen
                on the other side of the line for this many frames to be
                considered as having crossed the line. This is useful when
                dealing with unstable bounding boxes or when detections
                may linger on the line.
        """
        self.vector = Vector(start=start, end=end)
        self.limits = self._calculate_region_of_interest_limits(vector=self.vector)
        self.crossing_history_length = max(2, minimum_crossing_threshold + 1)
        self.crossing_state_history: Dict[int, Deque[bool]] = defaultdict(
            lambda: deque(maxlen=self.crossing_history_length)
        )
        self._in_count_per_class: Counter = Counter()
        self._out_count_per_class: Counter = Counter()
        self.triggering_anchors = triggering_anchors
        if not list(self.triggering_anchors):
            raise ValueError("Triggering anchors cannot be empty.")
        self.class_id_to_name: Dict[int, str] = {}

    @property
    def in_count(self) -> int:
        return sum(self._in_count_per_class.values())

    @property
    def out_count(self) -> int:
        return sum(self._out_count_per_class.values())

    @property
    def in_count_per_class(self) -> Dict[int, int]:
        return dict(self._in_count_per_class)

    @property
    def out_count_per_class(self) -> Dict[int, int]:
        return dict(self._out_count_per_class)

    def trigger(self, detections: Detections) -> Tuple[np.ndarray, np.ndarray]:
        """
        Update the `in_count` and `out_count` based on the objects that cross the line.

        Args:
            detections (Detections): A list of detections for which to update the
                counts.

        Returns:
            A tuple of two boolean NumPy arrays. The first array indicates which
                detections have crossed the line from outside to inside. The second
                array indicates which detections have crossed the line from inside to
                outside.
        """
        crossed_in = np.full(len(detections), False)
        crossed_out = np.full(len(detections), False)

        if len(detections) == 0:
            return crossed_in, crossed_out

        if detections.tracker_id is None:
            warnings.warn(
                "Line zone counting skipped. LineZone requires tracker_id. Refer to "
                "https://supervision.roboflow.com/latest/trackers for more "
                "information.",
                category=SupervisionWarnings,
            )
            return crossed_in, crossed_out

        self._update_class_id_to_name(detections)

        in_limits, has_any_left_trigger, has_any_right_trigger = (
            self._compute_anchor_sides(detections)
        )

        class_ids: List[Optional[int]] = (
            list(detections.class_id)
            if detections.class_id is not None
            else [None] * len(detections)
        )

        for i, (class_id, tracker_id) in enumerate(
            zip(class_ids, detections.tracker_id)
        ):
            if not in_limits[i]:
                continue

            if has_any_left_trigger[i] and has_any_right_trigger[i]:
                continue

            tracker_state: bool = has_any_left_trigger[i]
            crossing_history = self.crossing_state_history[tracker_id]
            crossing_history.append(tracker_state)

            if len(crossing_history) < self.crossing_history_length:
                continue

            # TODO: Account for incorrect class_id.
            #   Most likely this would involve indexing self.crossing_state_history
            #   with (tracker_id, class_id).

            oldest_state = crossing_history[0]
            if crossing_history.count(oldest_state) > 1:
                continue

            if tracker_state:
                self._in_count_per_class[class_id] += 1
                crossed_in[i] = True
            else:
                self._out_count_per_class[class_id] += 1
                crossed_out[i] = True

        return crossed_in, crossed_out

    @staticmethod
    def _calculate_region_of_interest_limits(vector: Vector) -> Tuple[Vector, Vector]:
        magnitude = vector.magnitude

        if magnitude == 0:
            raise ValueError("The magnitude of the vector cannot be zero.")

        delta_x = vector.end.x - vector.start.x
        delta_y = vector.end.y - vector.start.y

        unit_vector_x = delta_x / magnitude
        unit_vector_y = delta_y / magnitude

        perpendicular_vector_x = -unit_vector_y
        perpendicular_vector_y = unit_vector_x

        start_region_limit = Vector(
            start=vector.start,
            end=Point(
                x=vector.start.x + perpendicular_vector_x,
                y=vector.start.y + perpendicular_vector_y,
            ),
        )
        end_region_limit = Vector(
            start=vector.end,
            end=Point(
                x=vector.end.x - perpendicular_vector_x,
                y=vector.end.y - perpendicular_vector_y,
            ),
        )
        return start_region_limit, end_region_limit

    def _compute_anchor_sides(
        self, detections: Detections
    ) -> Tuple[npt.NDArray[np.bool_], npt.NDArray[np.bool_], npt.NDArray[np.bool_]]:
        """
        Find if detections' anchors are within the limit of the line
        zone and which anchors are on its left and right side.

        Assumes:
            * At least 1 detection is provided
            * Detections have `tracker_id`

        The limit is defined as the region between the two lines,
        perpendicular to the line zone, and passing through its start
        and end points, as shown below:

        Limits:
        ```
                |    IN    ↑
                |          |
          OUT   o---LINE---o   OUT
                |          |
                ↓    IN    |
        ```

        Args:
            detections (Detections): The detections to check.

        Returns:
            result (Tuple[np.ndarray, np.ndarray, np.ndarray]):
                All 3 arrays are boolean arrays of shape (N, ) where N is the
                number of detections. The first array, `in_limits`, indicates
                if the detection's anchor is within the line zone limits.
                The second array, `has_any_left_trigger`, indicates if the
                detection's anchor is on the left side of the line zone.
                The third array, `has_any_right_trigger`, indicates if the
                detection's anchor is on the right side of the line zone.
        """
        assert len(detections) > 0
        assert detections.tracker_id is not None

        all_anchors = np.array(
            [
                detections.get_anchors_coordinates(anchor)
                for anchor in self.triggering_anchors
            ]
        )

        cross_products_1 = cross_product(all_anchors, self.limits[0])
        cross_products_2 = cross_product(all_anchors, self.limits[1])

        # Works because limit vectors are pointing in opposite directions
        in_limits = (cross_products_1 > 0) == (cross_products_2 > 0)
        in_limits = np.all(in_limits, axis=0)

        triggers = cross_product(all_anchors, self.vector) < 0
        has_any_left_trigger = np.any(triggers, axis=0)
        has_any_right_trigger = np.any(~triggers, axis=0)

        return in_limits, has_any_left_trigger, has_any_right_trigger

    def _update_class_id_to_name(self, detections: Detections) -> None:
        """
        Update the attribute keeping track of which class
        IDs correspond to which class names.

        Assumes that class_names are only provided when class_ids are.
        """
        class_names = detections.data.get(CLASS_NAME_DATA_FIELD)
        assert class_names is None or detections.class_id is not None

        if detections.class_id is None:
            return

        if class_names is None:
            new_names = {class_id: str(class_id) for class_id in detections.class_id}
        else:
            new_names = {
                class_id: class_name
                for class_id, class_name in zip(detections.class_id, class_names)
            }
        self.class_id_to_name.update(new_names)

Functions

__init__(start, end, triggering_anchors=(Position.TOP_LEFT, Position.TOP_RIGHT, Position.BOTTOM_LEFT, Position.BOTTOM_RIGHT), minimum_crossing_threshold=1)

Parameters:

Name Type Description Default

start

Point

The starting point of the line.

required

end

Point

The ending point of the line.

required

triggering_anchors

List[Position]

A list of positions specifying which anchors of the detections bounding box to consider when deciding on whether the detection has passed the line counter or not. By default, this contains the four corners of the detection's bounding box

(TOP_LEFT, TOP_RIGHT, BOTTOM_LEFT, BOTTOM_RIGHT)

minimum_crossing_threshold

int

Detection needs to be seen on the other side of the line for this many frames to be considered as having crossed the line. This is useful when dealing with unstable bounding boxes or when detections may linger on the line.

1
Source code in supervision/detection/line_zone.py
def __init__(
    self,
    start: Point,
    end: Point,
    triggering_anchors: Iterable[Position] = (
        Position.TOP_LEFT,
        Position.TOP_RIGHT,
        Position.BOTTOM_LEFT,
        Position.BOTTOM_RIGHT,
    ),
    minimum_crossing_threshold: int = 1,
):
    """
    Args:
        start (Point): The starting point of the line.
        end (Point): The ending point of the line.
        triggering_anchors (List[sv.Position]): A list of positions
            specifying which anchors of the detections bounding box
            to consider when deciding on whether the detection
            has passed the line counter or not. By default, this
            contains the four corners of the detection's bounding box
        minimum_crossing_threshold (int): Detection needs to be seen
            on the other side of the line for this many frames to be
            considered as having crossed the line. This is useful when
            dealing with unstable bounding boxes or when detections
            may linger on the line.
    """
    self.vector = Vector(start=start, end=end)
    self.limits = self._calculate_region_of_interest_limits(vector=self.vector)
    self.crossing_history_length = max(2, minimum_crossing_threshold + 1)
    self.crossing_state_history: Dict[int, Deque[bool]] = defaultdict(
        lambda: deque(maxlen=self.crossing_history_length)
    )
    self._in_count_per_class: Counter = Counter()
    self._out_count_per_class: Counter = Counter()
    self.triggering_anchors = triggering_anchors
    if not list(self.triggering_anchors):
        raise ValueError("Triggering anchors cannot be empty.")
    self.class_id_to_name: Dict[int, str] = {}

trigger(detections)

Update the in_count and out_count based on the objects that cross the line.

Parameters:

Name Type Description Default

detections

Detections

A list of detections for which to update the counts.

required

Returns:

Type Description
Tuple[ndarray, ndarray]

A tuple of two boolean NumPy arrays. The first array indicates which detections have crossed the line from outside to inside. The second array indicates which detections have crossed the line from inside to outside.

Source code in supervision/detection/line_zone.py
def trigger(self, detections: Detections) -> Tuple[np.ndarray, np.ndarray]:
    """
    Update the `in_count` and `out_count` based on the objects that cross the line.

    Args:
        detections (Detections): A list of detections for which to update the
            counts.

    Returns:
        A tuple of two boolean NumPy arrays. The first array indicates which
            detections have crossed the line from outside to inside. The second
            array indicates which detections have crossed the line from inside to
            outside.
    """
    crossed_in = np.full(len(detections), False)
    crossed_out = np.full(len(detections), False)

    if len(detections) == 0:
        return crossed_in, crossed_out

    if detections.tracker_id is None:
        warnings.warn(
            "Line zone counting skipped. LineZone requires tracker_id. Refer to "
            "https://supervision.roboflow.com/latest/trackers for more "
            "information.",
            category=SupervisionWarnings,
        )
        return crossed_in, crossed_out

    self._update_class_id_to_name(detections)

    in_limits, has_any_left_trigger, has_any_right_trigger = (
        self._compute_anchor_sides(detections)
    )

    class_ids: List[Optional[int]] = (
        list(detections.class_id)
        if detections.class_id is not None
        else [None] * len(detections)
    )

    for i, (class_id, tracker_id) in enumerate(
        zip(class_ids, detections.tracker_id)
    ):
        if not in_limits[i]:
            continue

        if has_any_left_trigger[i] and has_any_right_trigger[i]:
            continue

        tracker_state: bool = has_any_left_trigger[i]
        crossing_history = self.crossing_state_history[tracker_id]
        crossing_history.append(tracker_state)

        if len(crossing_history) < self.crossing_history_length:
            continue

        # TODO: Account for incorrect class_id.
        #   Most likely this would involve indexing self.crossing_state_history
        #   with (tracker_id, class_id).

        oldest_state = crossing_history[0]
        if crossing_history.count(oldest_state) > 1:
            continue

        if tracker_state:
            self._in_count_per_class[class_id] += 1
            crossed_in[i] = True
        else:
            self._out_count_per_class[class_id] += 1
            crossed_out[i] = True

    return crossed_in, crossed_out

LineZoneAnnotator

Source code in supervision/detection/line_zone.py
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
class LineZoneAnnotator:
    def __init__(
        self,
        thickness: int = 2,
        color: Color = Color.WHITE,
        text_thickness: int = 2,
        text_color: Color = Color.BLACK,
        text_scale: float = 0.5,
        text_offset: float = 1.5,
        text_padding: int = 10,
        custom_in_text: Optional[str] = None,
        custom_out_text: Optional[str] = None,
        display_in_count: bool = True,
        display_out_count: bool = True,
        display_text_box: bool = True,
        text_orient_to_line: bool = False,
        text_centered: bool = True,
    ):
        """
        A class for drawing the `LineZone` and its detected object count
        on an image.

        Attributes:
            thickness (int): Line thickness.
            color (Color): Line color.
            text_thickness (int): Text thickness.
            text_color (Color): Text color.
            text_scale (float): Text scale.
            text_offset (float): How far the text will be from the line.
            text_padding (int): The empty space in the text box, surrounding the text.
            custom_in_text (Optional[str]): Write something else instead of "in".
            custom_out_text (Optional[str]): Write something else instead of "out".
            display_in_count (bool): Pass `False` to hide the "in" count.
            display_out_count (bool): Pass `False` to hide the "out" count.
            display_text_box (bool): Pass `False` to hide the text background box.
            text_orient_to_line (bool): ⭐ Match text orientation to the line.
                Recommended to set to `True`.
            text_centered (bool): Pass `False` to disable text centering. Useful
                when the label overlaps something important.

        """
        self.thickness: int = thickness
        self.color: Color = color
        self.text_thickness: int = text_thickness
        self.text_color: Color = text_color
        self.text_scale: float = text_scale
        self.text_offset: float = text_offset
        self.text_padding: int = text_padding
        self.in_text: str = custom_in_text if custom_in_text else "in"
        self.out_text: str = custom_out_text if custom_out_text else "out"
        self.display_in_count: bool = display_in_count
        self.display_out_count: bool = display_out_count
        self.display_text_box: bool = display_text_box
        self.text_orient_to_line: bool = text_orient_to_line
        self.text_centered: bool = text_centered

    def annotate(self, frame: np.ndarray, line_counter: LineZone) -> np.ndarray:
        """
        Draws the line on the frame using the line zone provided.

        Attributes:
            frame (np.ndarray): The image on which the line will be drawn.
            line_counter (LineZone): The line zone
                that will be used to draw the line.

        Returns:
            (np.ndarray): The image with the line drawn on it.

        """
        line_start = line_counter.vector.start.as_xy_int_tuple()
        line_end = line_counter.vector.end.as_xy_int_tuple()
        cv2.line(
            frame,
            line_start,
            line_end,
            self.color.as_bgr(),
            self.thickness,
            lineType=cv2.LINE_AA,
            shift=0,
        )
        cv2.circle(
            frame,
            line_start,
            radius=5,
            color=self.text_color.as_bgr(),
            thickness=-1,
            lineType=cv2.LINE_AA,
        )
        cv2.circle(
            frame,
            line_end,
            radius=5,
            color=self.text_color.as_bgr(),
            thickness=-1,
            lineType=cv2.LINE_AA,
        )

        in_text = f"{self.in_text}: {line_counter.in_count}"
        out_text = f"{self.out_text}: {line_counter.out_count}"
        line_angle_degrees = self._get_line_angle(line_counter)

        for text, is_shown, is_in_count in [
            (in_text, self.display_in_count, True),
            (out_text, self.display_out_count, False),
        ]:
            if not is_shown:
                continue

            if line_angle_degrees == 0 or not self.text_orient_to_line:
                self._draw_basic_label(
                    frame=frame,
                    line_center=line_counter.vector.center,
                    text=text,
                    is_in_count=is_in_count,
                )
            else:
                self._draw_oriented_label(
                    frame=frame,
                    line_zone=line_counter,
                    text=text,
                    is_in_count=is_in_count,
                )

        return frame

    def _get_line_angle(self, line_zone: LineZone) -> float:
        """
        Calculate the line counter angle (in degrees).

        Args:
            line_zone (LineZone): The line zone object.

        Returns:
            (float): Line counter angle, in degrees.
        """
        start_point = line_zone.vector.start.as_xy_int_tuple()
        end_point = line_zone.vector.end.as_xy_int_tuple()

        delta_x = end_point[0] - start_point[0]
        delta_y = end_point[1] - start_point[1]

        if delta_x == 0:
            line_angle = 90.0
            line_angle += 180 if delta_y < 0 else 0
        else:
            line_angle = math.degrees(math.atan(delta_y / delta_x))
            line_angle += 180 if delta_x < 0 else 0

        return line_angle

    def _calculate_anchor_in_frame(
        self,
        line_zone: LineZone,
        text_width: int,
        text_height: int,
        is_in_count: bool,
        label_dimension: int,
    ) -> Tuple[int, int]:
        """
        Calculate insertion anchor in frame to position the center of the count image.

        Args:
            line_zone (LineZone): The line counter object used for counting.
            text_width (int): Text width.
            text_height (int): Text height.
            is_in_count (bool): Whether the count should be placed over or below line.
            label_dimension (int): Size of the label image. Assumes the
                label is rectangular.

        Returns:
            (Tuple[int, int]): xy, point in an image where the label will be placed.
        """
        line_angle = self._get_line_angle(line_zone)

        if self.text_centered:
            mid_point = Vector(
                start=line_zone.vector.start, end=line_zone.vector.end
            ).center.as_xy_int_tuple()
            anchor = list(mid_point)
        else:
            end_point = line_zone.vector.end.as_xy_int_tuple()
            anchor = list(end_point)

            move_along_x = int(
                math.cos(math.radians(line_angle))
                * (text_width / 2 + self.text_padding)
            )
            move_along_y = int(
                math.sin(math.radians(line_angle))
                * (text_width / 2 + self.text_padding)
            )

            anchor[0] -= move_along_x
            anchor[1] -= move_along_y

        move_perpendicular_x = int(
            math.sin(math.radians(line_angle)) * (self.text_offset * text_height)
        )
        move_perpendicular_y = int(
            math.cos(math.radians(line_angle)) * (self.text_offset * text_height)
        )

        if is_in_count:
            anchor[0] += move_perpendicular_x
            anchor[1] -= move_perpendicular_y
        else:
            anchor[0] -= move_perpendicular_x
            anchor[1] += move_perpendicular_y

        x1 = max(anchor[0] - label_dimension // 2, 0)
        y1 = max(anchor[1] - label_dimension // 2, 0)

        return x1, y1

    def _draw_basic_label(
        self,
        frame: np.ndarray,
        line_center: Point,
        text: str,
        is_in_count: bool,
    ) -> np.ndarray:
        """
        Draw the count label on the frame. For example: "out: 7".
        The label contains horizontal text and is not rotated.

        Args:
            frame (np.ndarray): The entire scene, on which the label will be placed.
            line_center (Point): The center of the line zone.
            text (str): The text that will be drawn.
            is_in_count (bool): Whether to display the in count (above line)
                or out count (below line).

        Returns:
            (np.ndarray): The scene with the label drawn on it.
        """
        _, text_height = cv2.getTextSize(
            text, cv2.FONT_HERSHEY_SIMPLEX, self.text_scale, self.text_thickness
        )[0]

        if is_in_count:
            line_center.y -= int(self.text_offset * text_height)
        else:
            line_center.y += int(self.text_offset * text_height)

        draw_text(
            scene=frame,
            text=text,
            text_anchor=line_center,
            text_color=self.text_color,
            text_scale=self.text_scale,
            text_thickness=self.text_thickness,
            text_padding=self.text_padding,
            background_color=self.color if self.display_text_box else None,
        )

        return frame

    def _draw_oriented_label(
        self,
        frame: np.ndarray,
        line_zone: LineZone,
        text: str,
        is_in_count: bool,
    ) -> np.ndarray:
        """
        Draw the count label on the frame. For example: "out: 7".
        The label is oriented to match the line angle.

        Args:
            frame (np.ndarray): The entire scene, on which the label will be placed.
            line_zone (LineZone): The line zone responsible for counting
                objects crossing it.
            text (str): The text that will be drawn.
            is_in_count (bool): Whether to display the in count (above line)
                or out count (below line).

        Returns:
            (np.ndarray): The scene with the label drawn on it.
        """

        line_angle_degrees = self._get_line_angle(line_zone)
        label_image = self._make_label_image(
            text,
            text_scale=self.text_scale,
            text_thickness=self.text_thickness,
            text_padding=self.text_padding,
            text_color=self.text_color,
            text_box_show=self.display_text_box,
            text_box_color=self.color,
            line_angle_degrees=line_angle_degrees,
        )
        assert label_image.shape[0] == label_image.shape[1]

        text_width, text_height = cv2.getTextSize(
            text, cv2.FONT_HERSHEY_SIMPLEX, self.text_scale, self.text_thickness
        )[0]

        label_anchor = self._calculate_anchor_in_frame(
            line_zone=line_zone,
            text_width=text_width,
            text_height=text_height,
            is_in_count=is_in_count,
            label_dimension=label_image.shape[0],
        )

        frame = overlay_image(frame, label_image, label_anchor)

        return frame

    @staticmethod
    @lru_cache(maxsize=32)
    def _make_label_image(
        text: str,
        *,
        text_scale: float,
        text_thickness: int,
        text_padding: int,
        text_color: Color,
        text_box_show: bool,
        text_box_color: Color,
        line_angle_degrees: float,
    ) -> np.ndarray:
        """
        Create the small text box displaying line zone count. E.g. "out: 7".

        Args:
            text (str): The text to display.
            text_scale (float): The scale of the text.
            text_thickness (int): The thickness of the text.
            text_padding (int): The padding around the text.
            text_color (Color): The color of the text.
            text_box_show (bool): Whether to display the text box.
            text_box_color (Color): The color of the text box.
            line_angle_degrees (float): The angle of the line in degrees.

        Returns:
            (np.ndarray): The label of shape (H, W, 4), in BGRA format.
        """
        text_width, text_height = cv2.getTextSize(
            text, cv2.FONT_HERSHEY_SIMPLEX, text_scale, text_thickness
        )[0]

        annotation_dim = int((max(text_width, text_height) + text_padding * 2) * 1.5)
        annotation_shape = (annotation_dim, annotation_dim)
        annotation_center = Point(annotation_dim // 2, annotation_dim // 2)

        annotation = np.zeros((*annotation_shape, 3), dtype=np.uint8)
        annotation_alpha = np.zeros((*annotation_shape, 1), dtype=np.uint8)

        text_args: Dict[str, Any] = dict(
            text=text,
            text_anchor=annotation_center,
            text_scale=text_scale,
            text_thickness=text_thickness,
            text_padding=text_padding,
        )
        draw_text(
            scene=annotation,
            text_color=text_color,
            background_color=text_box_color if text_box_show else None,
            **text_args,
        )
        draw_text(
            scene=annotation_alpha,
            text_color=Color.WHITE,
            background_color=Color.WHITE if text_box_show else None,
            **text_args,
        )
        annotation = np.dstack((annotation, annotation_alpha))

        # Make sure text is displayed upright
        if 90 < line_angle_degrees % 360 < 270:
            annotation = cv2.flip(annotation, flipCode=-1).astype(np.uint8)

        rotation_angle = -line_angle_degrees
        rotation_matrix = cv2.getRotationMatrix2D(
            annotation_center.as_xy_float_tuple(), rotation_angle, scale=1
        )
        annotation = cv2.warpAffine(annotation, rotation_matrix, annotation_shape)

        return annotation

Functions

__init__(thickness=2, color=Color.WHITE, text_thickness=2, text_color=Color.BLACK, text_scale=0.5, text_offset=1.5, text_padding=10, custom_in_text=None, custom_out_text=None, display_in_count=True, display_out_count=True, display_text_box=True, text_orient_to_line=False, text_centered=True)

A class for drawing the LineZone and its detected object count on an image.

Attributes:

Name Type Description
thickness int

Line thickness.

color Color

Line color.

text_thickness int

Text thickness.

text_color Color

Text color.

text_scale float

Text scale.

text_offset float

How far the text will be from the line.

text_padding int

The empty space in the text box, surrounding the text.

custom_in_text Optional[str]

Write something else instead of "in".

custom_out_text Optional[str]

Write something else instead of "out".

display_in_count bool

Pass False to hide the "in" count.

display_out_count bool

Pass False to hide the "out" count.

display_text_box bool

Pass False to hide the text background box.

text_orient_to_line bool

⭐ Match text orientation to the line. Recommended to set to True.

text_centered bool

Pass False to disable text centering. Useful when the label overlaps something important.

Source code in supervision/detection/line_zone.py
def __init__(
    self,
    thickness: int = 2,
    color: Color = Color.WHITE,
    text_thickness: int = 2,
    text_color: Color = Color.BLACK,
    text_scale: float = 0.5,
    text_offset: float = 1.5,
    text_padding: int = 10,
    custom_in_text: Optional[str] = None,
    custom_out_text: Optional[str] = None,
    display_in_count: bool = True,
    display_out_count: bool = True,
    display_text_box: bool = True,
    text_orient_to_line: bool = False,
    text_centered: bool = True,
):
    """
    A class for drawing the `LineZone` and its detected object count
    on an image.

    Attributes:
        thickness (int): Line thickness.
        color (Color): Line color.
        text_thickness (int): Text thickness.
        text_color (Color): Text color.
        text_scale (float): Text scale.
        text_offset (float): How far the text will be from the line.
        text_padding (int): The empty space in the text box, surrounding the text.
        custom_in_text (Optional[str]): Write something else instead of "in".
        custom_out_text (Optional[str]): Write something else instead of "out".
        display_in_count (bool): Pass `False` to hide the "in" count.
        display_out_count (bool): Pass `False` to hide the "out" count.
        display_text_box (bool): Pass `False` to hide the text background box.
        text_orient_to_line (bool): ⭐ Match text orientation to the line.
            Recommended to set to `True`.
        text_centered (bool): Pass `False` to disable text centering. Useful
            when the label overlaps something important.

    """
    self.thickness: int = thickness
    self.color: Color = color
    self.text_thickness: int = text_thickness
    self.text_color: Color = text_color
    self.text_scale: float = text_scale
    self.text_offset: float = text_offset
    self.text_padding: int = text_padding
    self.in_text: str = custom_in_text if custom_in_text else "in"
    self.out_text: str = custom_out_text if custom_out_text else "out"
    self.display_in_count: bool = display_in_count
    self.display_out_count: bool = display_out_count
    self.display_text_box: bool = display_text_box
    self.text_orient_to_line: bool = text_orient_to_line
    self.text_centered: bool = text_centered

annotate(frame, line_counter)

Draws the line on the frame using the line zone provided.

Attributes:

Name Type Description
frame ndarray

The image on which the line will be drawn.

line_counter LineZone

The line zone that will be used to draw the line.

Returns:

Type Description
ndarray

The image with the line drawn on it.

Source code in supervision/detection/line_zone.py
def annotate(self, frame: np.ndarray, line_counter: LineZone) -> np.ndarray:
    """
    Draws the line on the frame using the line zone provided.

    Attributes:
        frame (np.ndarray): The image on which the line will be drawn.
        line_counter (LineZone): The line zone
            that will be used to draw the line.

    Returns:
        (np.ndarray): The image with the line drawn on it.

    """
    line_start = line_counter.vector.start.as_xy_int_tuple()
    line_end = line_counter.vector.end.as_xy_int_tuple()
    cv2.line(
        frame,
        line_start,
        line_end,
        self.color.as_bgr(),
        self.thickness,
        lineType=cv2.LINE_AA,
        shift=0,
    )
    cv2.circle(
        frame,
        line_start,
        radius=5,
        color=self.text_color.as_bgr(),
        thickness=-1,
        lineType=cv2.LINE_AA,
    )
    cv2.circle(
        frame,
        line_end,
        radius=5,
        color=self.text_color.as_bgr(),
        thickness=-1,
        lineType=cv2.LINE_AA,
    )

    in_text = f"{self.in_text}: {line_counter.in_count}"
    out_text = f"{self.out_text}: {line_counter.out_count}"
    line_angle_degrees = self._get_line_angle(line_counter)

    for text, is_shown, is_in_count in [
        (in_text, self.display_in_count, True),
        (out_text, self.display_out_count, False),
    ]:
        if not is_shown:
            continue

        if line_angle_degrees == 0 or not self.text_orient_to_line:
            self._draw_basic_label(
                frame=frame,
                line_center=line_counter.vector.center,
                text=text,
                is_in_count=is_in_count,
            )
        else:
            self._draw_oriented_label(
                frame=frame,
                line_zone=line_counter,
                text=text,
                is_in_count=is_in_count,
            )

    return frame

LineZoneAnnotatorMulticlass

Source code in supervision/detection/line_zone.py
class LineZoneAnnotatorMulticlass:
    def __init__(
        self,
        *,
        table_position: Literal[
            Position.TOP_LEFT,
            Position.TOP_RIGHT,
            Position.BOTTOM_LEFT,
            Position.BOTTOM_RIGHT,
        ] = Position.TOP_RIGHT,
        table_color: Color = Color.WHITE,
        table_margin: int = 10,
        table_padding: int = 10,
        table_max_width: int = 400,
        text_color: Color = Color.BLACK,
        text_scale: float = 0.75,
        text_thickness: int = 1,
        force_draw_class_ids: bool = False,
    ):
        """
        Draw a table showing how many items of each class crossed each line.

        Args:
            table_position (Position): The position of the table.
            table_color (Color): The color of the table.
            table_margin (int): The margin of the table from the image border.
            table_padding (int): The padding of the table.
            table_max_width (int): The maximum width of the table.
            text_color (Color): The color of the text.
            text_scale (float): The scale of the text.
            text_thickness (int): The thickness of the text.
            force_draw_class_ids (bool): Instead of writing the class names,
                on the table, write the class IDs. E.g. instead of `person: 6`,
                write `0: 6`.
        """
        if table_position not in {
            Position.TOP_LEFT,
            Position.TOP_RIGHT,
            Position.BOTTOM_LEFT,
            Position.BOTTOM_RIGHT,
        }:
            raise ValueError(
                "Invalid table position. Supported values are:"
                " TOP_LEFT, TOP_RIGHT, BOTTOM_LEFT, BOTTOM_RIGHT."
            )

        self.table_position = table_position
        self.table_color = table_color
        self.table_margin = table_margin
        self.table_padding = table_padding
        self.table_max_width = table_max_width
        self.text_color = text_color
        self.text_scale = text_scale
        self.text_thickness = text_thickness
        self.force_draw_class_ids = force_draw_class_ids

    def annotate(
        self,
        frame: np.ndarray,
        line_zones: List[LineZone],
        line_zone_labels: Optional[List[str]] = None,
    ) -> np.ndarray:
        """
        Draws a table with the number of objects of each class that crossed each line.

        Attributes:
            frame (np.ndarray): The image on which the table will be drawn.
            line_zones (List[LineZone]): The line zones to be annotated.
            line_zone_labels (Optional[List[str]]): The labels, one for each
                line zone. If not provided, the default labels will be used.

        Returns:
            (np.ndarray): The image with the table drawn on it.

        """
        if line_zone_labels is None:
            line_zone_labels = [f"Line {i + 1}:" for i in range(len(line_zones))]
        if len(line_zones) != len(line_zone_labels):
            raise ValueError("The number of line zones and their labels must match.")

        text_lines = ["Line Crossings:"]
        for line_zone, line_zone_label in zip(line_zones, line_zone_labels):
            text_lines.append(line_zone_label)
            class_id_to_name = line_zone.class_id_to_name

            for direction, count_per_class in [
                ("In", line_zone.in_count_per_class),
                ("Out", line_zone.out_count_per_class),
            ]:
                if not count_per_class:
                    continue

                text_lines.append(f" {direction}:")
                for class_id, count in count_per_class.items():
                    class_name = (
                        class_id_to_name.get(class_id, str(class_id))
                        if not self.force_draw_class_ids
                        else str(class_id)
                    )
                    text_lines.append(f"  {class_name}: {count}")

        table_width, table_height = 0, 0
        for line in text_lines:
            text_width, text_height = cv2.getTextSize(
                line, cv2.FONT_HERSHEY_SIMPLEX, self.text_scale, self.text_thickness
            )[0]
            text_height += TEXT_MARGIN
            table_width = max(table_width, text_width)
            table_height += text_height

        table_width += 2 * self.table_padding
        table_height += 2 * self.table_padding
        table_max_height = frame.shape[0] - 2 * self.table_margin
        table_height = min(table_height, table_max_height)
        table_width = min(table_width, self.table_max_width)

        position_map = {
            Position.TOP_LEFT: (self.table_margin, self.table_margin),
            Position.TOP_RIGHT: (
                frame.shape[1] - table_width - self.table_margin,
                self.table_margin,
            ),
            Position.BOTTOM_LEFT: (
                self.table_margin,
                frame.shape[0] - table_height - self.table_margin,
            ),
            Position.BOTTOM_RIGHT: (
                frame.shape[1] - table_width - self.table_margin,
                frame.shape[0] - table_height - self.table_margin,
            ),
        }
        table_x1, table_y1 = position_map[self.table_position]

        table_rect = Rect(
            x=table_x1, y=table_y1, width=table_width, height=table_height
        )
        frame = draw_rectangle(
            scene=frame, rect=table_rect, color=self.table_color, thickness=-1
        )

        for i, line in enumerate(text_lines):
            _, text_height = cv2.getTextSize(
                line, cv2.FONT_HERSHEY_SIMPLEX, self.text_scale, self.text_thickness
            )[0]
            text_height += TEXT_MARGIN
            anchor_x = table_x1 + self.table_padding
            anchor_y = table_y1 + self.table_padding + (i + 1) * text_height

            cv2.putText(
                img=frame,
                text=line,
                org=(anchor_x, anchor_y),
                fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                fontScale=self.text_scale,
                color=self.text_color.as_bgr(),
                thickness=self.text_thickness,
                lineType=cv2.LINE_AA,
            )

        return frame

Functions

__init__(*, table_position=Position.TOP_RIGHT, table_color=Color.WHITE, table_margin=10, table_padding=10, table_max_width=400, text_color=Color.BLACK, text_scale=0.75, text_thickness=1, force_draw_class_ids=False)

Draw a table showing how many items of each class crossed each line.

Parameters:

Name Type Description Default

table_position

Position

The position of the table.

TOP_RIGHT

table_color

Color

The color of the table.

WHITE

table_margin

int

The margin of the table from the image border.

10

table_padding

int

The padding of the table.

10

table_max_width

int

The maximum width of the table.

400

text_color

Color

The color of the text.

BLACK

text_scale

float

The scale of the text.

0.75

text_thickness

int

The thickness of the text.

1

force_draw_class_ids

bool

Instead of writing the class names, on the table, write the class IDs. E.g. instead of person: 6, write 0: 6.

False
Source code in supervision/detection/line_zone.py
def __init__(
    self,
    *,
    table_position: Literal[
        Position.TOP_LEFT,
        Position.TOP_RIGHT,
        Position.BOTTOM_LEFT,
        Position.BOTTOM_RIGHT,
    ] = Position.TOP_RIGHT,
    table_color: Color = Color.WHITE,
    table_margin: int = 10,
    table_padding: int = 10,
    table_max_width: int = 400,
    text_color: Color = Color.BLACK,
    text_scale: float = 0.75,
    text_thickness: int = 1,
    force_draw_class_ids: bool = False,
):
    """
    Draw a table showing how many items of each class crossed each line.

    Args:
        table_position (Position): The position of the table.
        table_color (Color): The color of the table.
        table_margin (int): The margin of the table from the image border.
        table_padding (int): The padding of the table.
        table_max_width (int): The maximum width of the table.
        text_color (Color): The color of the text.
        text_scale (float): The scale of the text.
        text_thickness (int): The thickness of the text.
        force_draw_class_ids (bool): Instead of writing the class names,
            on the table, write the class IDs. E.g. instead of `person: 6`,
            write `0: 6`.
    """
    if table_position not in {
        Position.TOP_LEFT,
        Position.TOP_RIGHT,
        Position.BOTTOM_LEFT,
        Position.BOTTOM_RIGHT,
    }:
        raise ValueError(
            "Invalid table position. Supported values are:"
            " TOP_LEFT, TOP_RIGHT, BOTTOM_LEFT, BOTTOM_RIGHT."
        )

    self.table_position = table_position
    self.table_color = table_color
    self.table_margin = table_margin
    self.table_padding = table_padding
    self.table_max_width = table_max_width
    self.text_color = text_color
    self.text_scale = text_scale
    self.text_thickness = text_thickness
    self.force_draw_class_ids = force_draw_class_ids

annotate(frame, line_zones, line_zone_labels=None)

Draws a table with the number of objects of each class that crossed each line.

Attributes:

Name Type Description
frame ndarray

The image on which the table will be drawn.

line_zones List[LineZone]

The line zones to be annotated.

line_zone_labels Optional[List[str]]

The labels, one for each line zone. If not provided, the default labels will be used.

Returns:

Type Description
ndarray

The image with the table drawn on it.

Source code in supervision/detection/line_zone.py
def annotate(
    self,
    frame: np.ndarray,
    line_zones: List[LineZone],
    line_zone_labels: Optional[List[str]] = None,
) -> np.ndarray:
    """
    Draws a table with the number of objects of each class that crossed each line.

    Attributes:
        frame (np.ndarray): The image on which the table will be drawn.
        line_zones (List[LineZone]): The line zones to be annotated.
        line_zone_labels (Optional[List[str]]): The labels, one for each
            line zone. If not provided, the default labels will be used.

    Returns:
        (np.ndarray): The image with the table drawn on it.

    """
    if line_zone_labels is None:
        line_zone_labels = [f"Line {i + 1}:" for i in range(len(line_zones))]
    if len(line_zones) != len(line_zone_labels):
        raise ValueError("The number of line zones and their labels must match.")

    text_lines = ["Line Crossings:"]
    for line_zone, line_zone_label in zip(line_zones, line_zone_labels):
        text_lines.append(line_zone_label)
        class_id_to_name = line_zone.class_id_to_name

        for direction, count_per_class in [
            ("In", line_zone.in_count_per_class),
            ("Out", line_zone.out_count_per_class),
        ]:
            if not count_per_class:
                continue

            text_lines.append(f" {direction}:")
            for class_id, count in count_per_class.items():
                class_name = (
                    class_id_to_name.get(class_id, str(class_id))
                    if not self.force_draw_class_ids
                    else str(class_id)
                )
                text_lines.append(f"  {class_name}: {count}")

    table_width, table_height = 0, 0
    for line in text_lines:
        text_width, text_height = cv2.getTextSize(
            line, cv2.FONT_HERSHEY_SIMPLEX, self.text_scale, self.text_thickness
        )[0]
        text_height += TEXT_MARGIN
        table_width = max(table_width, text_width)
        table_height += text_height

    table_width += 2 * self.table_padding
    table_height += 2 * self.table_padding
    table_max_height = frame.shape[0] - 2 * self.table_margin
    table_height = min(table_height, table_max_height)
    table_width = min(table_width, self.table_max_width)

    position_map = {
        Position.TOP_LEFT: (self.table_margin, self.table_margin),
        Position.TOP_RIGHT: (
            frame.shape[1] - table_width - self.table_margin,
            self.table_margin,
        ),
        Position.BOTTOM_LEFT: (
            self.table_margin,
            frame.shape[0] - table_height - self.table_margin,
        ),
        Position.BOTTOM_RIGHT: (
            frame.shape[1] - table_width - self.table_margin,
            frame.shape[0] - table_height - self.table_margin,
        ),
    }
    table_x1, table_y1 = position_map[self.table_position]

    table_rect = Rect(
        x=table_x1, y=table_y1, width=table_width, height=table_height
    )
    frame = draw_rectangle(
        scene=frame, rect=table_rect, color=self.table_color, thickness=-1
    )

    for i, line in enumerate(text_lines):
        _, text_height = cv2.getTextSize(
            line, cv2.FONT_HERSHEY_SIMPLEX, self.text_scale, self.text_thickness
        )[0]
        text_height += TEXT_MARGIN
        anchor_x = table_x1 + self.table_padding
        anchor_y = table_y1 + self.table_padding + (i + 1) * text_height

        cv2.putText(
            img=frame,
            text=line,
            org=(anchor_x, anchor_y),
            fontFace=cv2.FONT_HERSHEY_SIMPLEX,
            fontScale=self.text_scale,
            color=self.text_color.as_bgr(),
            thickness=self.text_thickness,
            lineType=cv2.LINE_AA,
        )

    return frame

Comments