Boxes Utils¶
supervision.detection.utils.boxes.move_boxes(xyxy: npt.NDArray[np.float64], offset: npt.NDArray[np.int32]) -> npt.NDArray[np.float64]
¶
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
|
NDArray[float64]
|
An array of shape |
required |
|
NDArray[int32]
|
An array of shape |
required |
Returns:
| Type | Description |
|---|---|
NDArray[float64]
|
Repositioned bounding boxes. |
Examples:
>>> import numpy as np
>>> import supervision as sv
>>> xyxy = np.array([
... [10, 10, 20, 20],
... [30, 30, 40, 40]
... ])
>>> offset = np.array([5, 5])
>>> sv.move_boxes(xyxy=xyxy, offset=offset)
array([[15, 15, 25, 25],
[35, 35, 45, 45]])
Source code in src/supervision/detection/utils/boxes.py
supervision.detection.utils.boxes.scale_boxes(xyxy: npt.NDArray[np.float64], factor: float) -> npt.NDArray[np.float64]
¶
Scale the dimensions of bounding boxes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
|
NDArray[float64]
|
An array of shape |
required |
|
float
|
A float value representing the factor by which the box dimensions are scaled. A factor greater than 1 enlarges the boxes, while a factor less than 1 shrinks them. |
required |
Returns:
| Type | Description |
|---|---|
NDArray[float64]
|
Scaled bounding boxes. |
Examples:
>>> import numpy as np
>>> import supervision as sv
>>> xyxy = np.array([
... [10, 10, 20, 20],
... [30, 30, 40, 40]
... ])
>>> sv.scale_boxes(xyxy=xyxy, factor=1.5)
array([[ 7.5, 7.5, 22.5, 22.5],
[27.5, 27.5, 42.5, 42.5]])
Source code in src/supervision/detection/utils/boxes.py
supervision.detection.utils.boxes.clip_boxes(xyxy: npt.NDArray[np.number], resolution_wh: tuple[int, int]) -> npt.NDArray[np.number]
¶
Clips bounding boxes coordinates to fit within the frame resolution.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
|
NDArray[number]
|
A numpy array of shape |
required |
|
tuple[int, int]
|
A tuple of the form
|
required |
Returns:
| Type | Description |
|---|---|
NDArray[number]
|
A numpy array of shape |
Examples:
>>> import numpy as np
>>> import supervision as sv
>>> xyxy = np.array([
... [10, 20, 300, 200],
... [15, 25, 350, 450],
... [-10, -20, 30, 40]
... ])
>>> sv.clip_boxes(xyxy=xyxy, resolution_wh=(320, 240))
array([[ 10, 20, 300, 200],
[ 15, 25, 320, 240],
[ 0, 0, 30, 40]])
Source code in src/supervision/detection/utils/boxes.py
supervision.detection.utils.boxes.pad_boxes(xyxy: npt.NDArray[np.number], px: int, py: int | None = None) -> npt.NDArray[np.number]
¶
Pads bounding boxes coordinates with a constant padding.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
|
NDArray[number]
|
A numpy array of shape |
required |
|
int
|
The padding value to be added to both the left and right sides of each bounding box. |
required |
|
int | None
|
The padding value to be added to both the top and bottom
sides of each bounding box. If not provided, |
None
|
Returns:
| Type | Description |
|---|---|
NDArray[number]
|
A numpy array of shape |
Examples:
>>> import numpy as np
>>> import supervision as sv
>>> xyxy = np.array([
... [10, 20, 30, 40],
... [15, 25, 35, 45]
... ])
>>> sv.pad_boxes(xyxy=xyxy, px=5, py=10)
array([[ 5, 10, 35, 50],
[10, 15, 40, 55]])
Source code in src/supervision/detection/utils/boxes.py
supervision.detection.utils.boxes.denormalize_boxes(xyxy: npt.NDArray[np.number], resolution_wh: tuple[int, int], normalization_factor: float = 1.0) -> npt.NDArray[np.number]
¶
Convert normalized bounding box coordinates to absolute pixel coordinates.
Multiplies each bounding box coordinate by image size and divides by
normalization_factor, mapping values from normalized [0, normalization_factor]
to absolute pixel values for a given resolution.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
|
NDArray[number]
|
Normalized bounding boxes of shape |
required |
|
tuple[int, int]
|
Target image resolution as |
required |
|
float
|
Maximum value of input coordinate range.
Defaults to |
1.0
|
Returns:
| Type | Description |
|---|---|
NDArray[number]
|
Array of shape |
Examples:
>>> import numpy as np
>>> import supervision as sv
>>> xyxy = np.array([
... [0.1, 0.2, 0.5, 0.6],
... [0.3, 0.4, 0.7, 0.8],
... [0.2, 0.1, 0.6, 0.5]
... ])
>>> sv.denormalize_boxes(xyxy, (1280, 720))
array([[128., 144., 640., 432.],
[384., 288., 896., 576.],
[256., 72., 768., 360.]])
>>> xyxy = np.array([
... [256., 128., 768., 640.]
... ])
>>> sv.denormalize_boxes(xyxy, (1280, 720), normalization_factor=1024.0)
array([[320., 90., 960., 450.]])