Core
Warning
Dataset API is still fluid and may change. If you use Dataset API in your project until further notice, freeze the
supervision
version in your requirements.txt
or setup.py
.
DetectionDataset¶
Bases: BaseDataset
Dataclass containing information about object detection dataset.
Attributes:
Name | Type | Description |
---|---|---|
classes |
List[str]
|
List containing dataset class names. |
images |
Dict[str, ndarray]
|
Dictionary mapping image name to image. |
annotations |
Dict[str, Detections]
|
Dictionary mapping image name to annotations. |
Source code in supervision/dataset/core.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
|
__iter__()
¶
Iterate over the images and annotations in the dataset.
Yields:
Type | Description |
---|---|
str
|
Iterator[Tuple[str, np.ndarray, Detections]]: An iterator that yields tuples containing the image name, the image data, and its corresponding annotation. |
Source code in supervision/dataset/core.py
62 63 64 65 66 67 68 69 70 71 |
|
__len__()
¶
Return the number of images in the dataset.
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
The number of images. |
Source code in supervision/dataset/core.py
53 54 55 56 57 58 59 60 |
|
as_pascal_voc(images_directory_path=None, annotations_directory_path=None, min_image_area_percentage=0.0, max_image_area_percentage=1.0, approximation_percentage=0.0)
¶
Exports the dataset to PASCAL VOC format. This method saves the images and their corresponding annotations in PASCAL VOC format, which consists of XML files. The method allows filtering the detections based on their area percentage.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images_directory_path |
Optional[str]
|
The path to the directory where the images should be saved. If not provided, images will not be saved. |
None
|
annotations_directory_path |
Optional[str]
|
The path to the directory where the annotations in PASCAL VOC format should be saved. If not provided, annotations will not be saved. |
None
|
min_image_area_percentage |
float
|
The minimum percentage of detection area relative to the image area for a detection to be included. |
0.0
|
max_image_area_percentage |
float
|
The maximum percentage of detection area relative to the image area for a detection to be included. |
1.0
|
approximation_percentage |
float
|
The percentage of polygon points to be removed from the input polygon, in the range [0, 1). |
0.0
|
Source code in supervision/dataset/core.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
|
as_yolo(images_directory_path=None, annotations_directory_path=None, data_yaml_path=None, min_image_area_percentage=0.0, max_image_area_percentage=1.0, approximation_percentage=0.0)
¶
Exports the dataset to YOLO format. This method saves the images and their corresponding annotations in YOLO format, which is a simple text file that describes an object in the image. It also allows for the optional saving of a data.yaml file, used in YOLOv5, that contains metadata about the dataset.
The method allows filtering the detections based on their area percentage and offers an option for polygon approximation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images_directory_path |
Optional[str]
|
The path to the directory where the images should be saved. If not provided, images will not be saved. |
None
|
annotations_directory_path |
Optional[str]
|
The path to the directory where the annotations in YOLO format should be saved. If not provided, annotations will not be saved. |
None
|
data_yaml_path |
Optional[str]
|
The path where the data.yaml file should be saved. If not provided, the file will not be saved. |
None
|
min_image_area_percentage |
float
|
The minimum percentage of detection area relative to the image area for a detection to be included. |
0.0
|
max_image_area_percentage |
float
|
The maximum percentage of detection area relative to the image area for a detection to be included. |
1.0
|
approximation_percentage |
float
|
The percentage of polygon points to be removed from the input polygon, in the range [0, 1). This is useful for simplifying the annotations. |
0.0
|
Source code in supervision/dataset/core.py
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
|
from_pascal_voc(images_directory_path, annotations_directory_path)
classmethod
¶
Creates a Dataset instance from PASCAL VOC formatted data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images_directory_path |
str
|
The path to the directory containing the images. |
required |
annotations_directory_path |
str
|
The path to the directory containing the PASCAL VOC XML annotations. |
required |
Returns:
Name | Type | Description |
---|---|---|
DetectionDataset |
DetectionDataset
|
A DetectionDataset instance containing the loaded images and annotations. |
Example
>>> import roboflow
>>> from roboflow import Roboflow
>>> import supervision as sv
>>> roboflow.login()
>>> rf = Roboflow()
>>> project = rf.workspace(WORKSPACE_ID).project(PROJECT_ID)
>>> dataset = project.version(PROJECT_VERSION).download("voc")
>>> ds = sv.DetectionDataset.from_yolo(
... images_directory_path=f"{dataset.location}/train/images",
... annotations_directory_path=f"{dataset.location}/train/labels"
... )
>>> ds.classes
['dog', 'person']
Source code in supervision/dataset/core.py
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
|
from_yolo(images_directory_path, annotations_directory_path, data_yaml_path, force_masks=False)
classmethod
¶
Creates a Dataset instance from YOLO formatted data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images_directory_path |
str
|
The path to the directory containing the images. |
required |
annotations_directory_path |
str
|
The path to the directory containing the YOLO annotation files. |
required |
data_yaml_path |
str
|
The path to the data YAML file containing class information. |
required |
force_masks |
bool
|
If True, forces masks to be loaded for all annotations, regardless of whether they are present. |
False
|
Returns:
Name | Type | Description |
---|---|---|
DetectionDataset |
DetectionDataset
|
A DetectionDataset instance containing the loaded images and annotations. |
Example
>>> import roboflow
>>> from roboflow import Roboflow
>>> import supervision as sv
>>> roboflow.login()
>>> rf = Roboflow()
>>> project = rf.workspace(WORKSPACE_ID).project(PROJECT_ID)
>>> dataset = project.version(PROJECT_VERSION).download("yolov5")
>>> ds = sv.DetectionDataset.from_yolo(
... images_directory_path=f"{dataset.location}/train/images",
... annotations_directory_path=f"{dataset.location}/train/labels",
... data_yaml_path=f"{dataset.location}/data.yaml"
... )
>>> ds.classes
['dog', 'person']
Source code in supervision/dataset/core.py
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
split(split_ratio=0.8, random_state=None, shuffle=True)
¶
Splits the dataset into two parts (training and testing) using the provided split_ratio.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
split_ratio |
float
|
The ratio of the training set to the entire dataset. Default is 0.8. |
0.8
|
random_state |
int
|
The seed for the random number generator. This is used for reproducibility. Default is None. |
None
|
shuffle |
bool
|
Whether to shuffle the data before splitting. Default is True. |
True
|
Returns:
Type | Description |
---|---|
Tuple[DetectionDataset, DetectionDataset]
|
Tuple[DetectionDataset, DetectionDataset]: A tuple containing the training and testing datasets. |
Example
>>> import supervision as sv
>>> ds = sv.DetectionDataset(...)
>>> train_ds, test_ds = ds.split(split_ratio=0.7, random_state=42, shuffle=True)
>>> len(train_ds), len(test_ds)
(700, 300)
Source code in supervision/dataset/core.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|