Core
Warning
Dataset
API is still fluid and may change. If you use Dataset in your project until further notice, freeze the
supervision
version in your requirements.txt
.
Dataset¶
Dataclass containing information about the dataset.
Attributes:
Name | Type | Description |
---|---|---|
classes |
List[str]
|
List containing dataset class names. |
images |
Dict[str, ndarray]
|
Dictionary mapping image name to image. |
annotations |
Dict[str, Detections]
|
Dictionary mapping image name to annotations. |
Source code in supervision/dataset/core.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
__iter__()
¶
Iterate over the images and annotations in the dataset.
Yields:
Type | Description |
---|---|
str
|
Iterator[Tuple[str, np.ndarray, Detections]]: An iterator that yields tuples containing the image name, the image data, and its corresponding annotation. |
Source code in supervision/dataset/core.py
43 44 45 46 47 48 49 50 51 52 |
|
__len__()
¶
Return the number of images in the dataset.
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
The number of images. |
Source code in supervision/dataset/core.py
34 35 36 37 38 39 40 41 |
|
as_pascal_voc(images_directory_path=None, annotations_directory_path=None, min_image_area_percentage=0.0, max_image_area_percentage=1.0, approximation_percentage=0.75)
¶
Exports the dataset to PASCAL VOC format. This method saves the images and their corresponding annotations in PASCAL VOC format, which consists of XML files. The method allows filtering the detections based on their area percentage.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images_directory_path |
Optional[str]
|
The path to the directory where the images should be saved. If not provided, images will not be saved. |
None
|
annotations_directory_path |
Optional[str]
|
The path to the directory where the annotations in PASCAL VOC format should be saved. If not provided, annotations will not be saved. |
None
|
min_image_area_percentage |
float
|
The minimum percentage of detection area relative to the image area for a detection to be included. |
0.0
|
max_image_area_percentage |
float
|
The maximum percentage of detection area relative to the image area for a detection to be included. |
1.0
|
approximation_percentage |
float
|
The percentage of polygon points to be removed from the input polygon, in the range [0, 1). |
0.75
|
Source code in supervision/dataset/core.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
from_pascal_voc(images_directory_path, annotations_directory_path)
classmethod
¶
Creates a Dataset instance from PASCAL VOC formatted data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images_directory_path |
str
|
The path to the directory containing the images. |
required |
annotations_directory_path |
str
|
The path to the directory containing the PASCAL VOC XML annotations. |
required |
Returns:
Name | Type | Description |
---|---|---|
Dataset |
Dataset
|
A Dataset instance containing the loaded images and annotations. |
Example
>>> import roboflow
>>> from roboflow import Roboflow
>>> import supervision as sv
>>> roboflow.login()
>>> rf = Roboflow()
>>> project = rf.workspace(WORKSPACE_ID).project(PROJECT_ID)
>>> dataset = project.version(PROJECT_VERSION).download("voc")
>>> train_dataset = sv.Dataset.from_yolo(
... images_directory_path=f"{dataset.location}/train/images",
... annotations_directory_path=f"{dataset.location}/train/labels"
... )
>>> dataset.classes
['dog', 'person']
Source code in supervision/dataset/core.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
from_yolo(images_directory_path, annotations_directory_path, data_yaml_path, force_masks=False)
classmethod
¶
Creates a Dataset instance from YOLO formatted data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images_directory_path |
str
|
The path to the directory containing the images. |
required |
annotations_directory_path |
str
|
The path to the directory containing the YOLO annotation files. |
required |
data_yaml_path |
str
|
The path to the data YAML file containing class information. |
required |
force_masks |
bool
|
If True, forces masks to be loaded for all annotations, regardless of whether they are present. |
False
|
Returns:
Name | Type | Description |
---|---|---|
Dataset |
Dataset
|
A Dataset instance containing the loaded images and annotations. |
Example
>>> import roboflow
>>> from roboflow import Roboflow
>>> import supervision as sv
>>> roboflow.login()
>>> rf = Roboflow()
>>> project = rf.workspace(WORKSPACE_ID).project(PROJECT_ID)
>>> dataset = project.version(PROJECT_VERSION).download("yolov5")
>>> train_dataset = sv.Dataset.from_yolo(
... images_directory_path=f"{dataset.location}/train/images",
... annotations_directory_path=f"{dataset.location}/train/labels",
... data_yaml_path=f"{dataset.location}/data.yaml"
... )
>>> dataset.classes
['dog', 'person']
Source code in supervision/dataset/core.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|