Skip to content

Utils

plot_image

Plots image using matplotlib.

Parameters:

Name Type Description Default
image ndarray

The frame to be displayed.

required
size Tuple[int, int]

The size of the plot.

(10, 10)
cmap str

the colormap to use for single channel images.

'gray'

Examples:

>>> import cv2
>>> import supervision as sv

>>> image = cv2.imread("path/to/image.jpg")

%matplotlib inline
>>> sv.plot_image(image, (16, 16))
Source code in supervision/notebook/utils.py
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
def plot_image(
    image: np.ndarray, size: Tuple[int, int] = (10, 10), cmap: Optional[str] = "gray"
) -> None:
    """
    Plots image using matplotlib.

    Args:
        image (np.ndarray): The frame to be displayed.
        size (Tuple[int, int]): The size of the plot.
        cmap (str): the colormap to use for single channel images.

    Examples:
        ```python
        >>> import cv2
        >>> import supervision as sv

        >>> image = cv2.imread("path/to/image.jpg")

        %matplotlib inline
        >>> sv.plot_image(image, (16, 16))
        ```
    """
    if image.ndim == 2:
        plt.figure(figsize=size)
        plt.imshow(image, cmap=cmap)
    else:
        plt.figure(figsize=size)
        plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    plt.show()

plot_images_grid

Plots images in a grid using matplotlib.

Parameters:

Name Type Description Default
images List[ndarray]

A list of images as numpy arrays.

required
grid_size Tuple[int, int]

A tuple specifying the number of rows and columns for the grid.

required
titles Optional[List[str]]

A list of titles for each image. Defaults to None.

None
size Tuple[int, int]

A tuple specifying the width and height of the entire plot in inches.

(12, 12)

Raises:

Type Description
ValueError

If the number of images exceeds the grid size.

Examples:

>>> import cv2
>>> import supervision as sv

>>> image1 = cv2.imread("path/to/image1.jpg")
>>> image2 = cv2.imread("path/to/image2.jpg")
>>> image3 = cv2.imread("path/to/image3.jpg")

>>> images = [image1, image2, image3]
>>> titles = ["Image 1", "Image 2", "Image 3"]

%matplotlib inline
>>> plot_images_grid(images, grid_size=(2, 2), titles=titles, figsize=(16, 16))
Source code in supervision/notebook/utils.py
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
def plot_images_grid(
    images: List[np.ndarray],
    grid_size: Tuple[int, int],
    titles: Optional[List[str]] = None,
    size: Tuple[int, int] = (12, 12),
) -> None:
    """
    Plots images in a grid using matplotlib.

    Args:
       images (List[np.ndarray]): A list of images as numpy arrays.
       grid_size (Tuple[int, int]): A tuple specifying the number of rows and columns for the grid.
       titles (Optional[List[str]]): A list of titles for each image. Defaults to None.
       size (Tuple[int, int]): A tuple specifying the width and height of the entire plot in inches.

    Raises:
       ValueError: If the number of images exceeds the grid size.

    Examples:
        ```python
        >>> import cv2
        >>> import supervision as sv

        >>> image1 = cv2.imread("path/to/image1.jpg")
        >>> image2 = cv2.imread("path/to/image2.jpg")
        >>> image3 = cv2.imread("path/to/image3.jpg")

        >>> images = [image1, image2, image3]
        >>> titles = ["Image 1", "Image 2", "Image 3"]

        %matplotlib inline
        >>> plot_images_grid(images, grid_size=(2, 2), titles=titles, figsize=(16, 16))
        ```
    """

    nrows, ncols = grid_size

    if len(images) > nrows * ncols:
        raise ValueError(
            "The number of images exceeds the grid size. Please increase the grid size or reduce the number of images."
        )

    fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=size)

    for idx, ax in enumerate(axes.flat):
        if idx < len(images):
            ax.imshow(cv2.cvtColor(images[idx], cv2.COLOR_BGR2RGB))
            if titles is not None and idx < len(titles):
                ax.set_title(titles[idx])
            ax.axis("off")
        else:
            ax.axis("off")

    plt.show()