Core
Detections
Data class containing information about the detections in a video frame.
Attributes:
Name | Type | Description |
---|---|---|
xyxy |
ndarray
|
An array of shape |
confidence |
Optional[ndarray]
|
An array of shape |
class_id |
ndarray
|
An array of shape |
tracker_id |
Optional[ndarray]
|
An array of shape |
Source code in supervision/detection/core.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
|
area: np.ndarray
property
Calculate the area of each bounding box in the set of object detections.
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: An array of floats containing the area of each bounding box in the format of (area_1, area_2, ..., area_n), where n is the number of detections. |
__iter__()
Iterates over the Detections object and yield a tuple of (xyxy, confidence, class_id, tracker_id)
for each detection.
Source code in supervision/detection/core.py
61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
__len__()
Returns the number of detections in the Detections object.
Source code in supervision/detection/core.py
55 56 57 58 59 |
|
from_transformers(transformers_results)
classmethod
Creates a Detections instance from Object Detection Transformer output Results
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object. |
Source code in supervision/detection/core.py
150 151 152 153 154 155 156 157 158 159 160 161 162 |
|
from_yolov5(yolov5_results)
classmethod
Creates a Detections instance from a YOLOv5 output Detections
Parameters:
Name | Type | Description | Default |
---|---|---|---|
yolov5_results |
Detections
|
The output Detections instance from YOLOv5 |
required |
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object. |
Example
>>> import torch
>>> from supervision import Detections
>>> model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
>>> results = model(frame)
>>> detections = Detections.from_yolov5(results)
Source code in supervision/detection/core.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
from_yolov8(yolov8_results)
classmethod
Creates a Detections instance from a YOLOv8 output Results
Parameters:
Name | Type | Description | Default |
---|---|---|---|
yolov8_results |
Results
|
The output Results instance from YOLOv8 |
required |
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object. |
Example
>>> from ultralytics import YOLO
>>> from supervision import Detections
>>> model = YOLO('yolov8s.pt')
>>> results = model(frame)[0]
>>> detections = Detections.from_yolov8(results)
Source code in supervision/detection/core.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|
get_anchor_coordinates(anchor)
Returns the bounding box coordinates for a specific anchor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
anchor |
Position
|
Position of bounding box anchor for which to return the coordinates. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: An array of shape |
Source code in supervision/detection/core.py
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
|
with_nms(threshold=0.5, class_agnostic=False)
Perform non-maximum suppression on the current set of object detections.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
threshold |
float
|
The intersection-over-union threshold to use for non-maximum suppression. Defaults to 0.5. |
0.5
|
class_agnostic |
bool
|
Whether to perform class-agnostic non-maximum suppression. If True, the class_id of each detection will be ignored. Defaults to False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object containing the subset of detections after non-maximum suppression. |
Raises:
Type | Description |
---|---|
AssertionError
|
If |
Source code in supervision/detection/core.py
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
|