Skip to content

Line Zone

LineZone

This class is responsible for counting the number of objects that cross a predefined line.

Warning

LineZone uses the tracker_id. Read here to learn how to plug tracking into your inference pipeline.

Attributes:

Name Type Description
in_count int

The number of objects that have crossed the line from outside to inside.

out_count int

The number of objects that have crossed the line from inside to outside.

Example
import supervision as sv
from ultralytics import YOLO

model = YOLO(<SOURCE_MODEL_PATH>)
tracker = sv.ByteTrack()
frames_generator = sv.get_video_frames_generator(<SOURCE_VIDEO_PATH>)
start, end = sv.Point(x=0, y=1080), sv.Point(x=3840, y=1080)
line_zone = sv.LineZone(start=start, end=end)

for frame in frames_generator:
    result = model(frame)[0]
    detections = sv.Detections.from_ultralytics(result)
    detections = tracker.update_with_detections(detections)
    crossed_in, crossed_out = line_zone.trigger(detections)

line_zone.in_count, line_zone.out_count
# 7, 2
Source code in supervision/detection/line_zone.py
class LineZone:
    """
    This class is responsible for counting the number of objects that cross a
    predefined line.

    <video controls>
        <source
            src="https://media.roboflow.com/supervision/cookbooks/count-objects-crossing-the-line-result-1280x720.mp4"
            type="video/mp4">
    </video>

    !!! warning

        LineZone uses the `tracker_id`. Read
        [here](/latest/trackers/) to learn how to plug
        tracking into your inference pipeline.

    Attributes:
        in_count (int): The number of objects that have crossed the line from outside
            to inside.
        out_count (int): The number of objects that have crossed the line from inside
            to outside.

    Example:
        ```python
        import supervision as sv
        from ultralytics import YOLO

        model = YOLO(<SOURCE_MODEL_PATH>)
        tracker = sv.ByteTrack()
        frames_generator = sv.get_video_frames_generator(<SOURCE_VIDEO_PATH>)
        start, end = sv.Point(x=0, y=1080), sv.Point(x=3840, y=1080)
        line_zone = sv.LineZone(start=start, end=end)

        for frame in frames_generator:
            result = model(frame)[0]
            detections = sv.Detections.from_ultralytics(result)
            detections = tracker.update_with_detections(detections)
            crossed_in, crossed_out = line_zone.trigger(detections)

        line_zone.in_count, line_zone.out_count
        # 7, 2
        ```
    """  # noqa: E501 // docs

    def __init__(
        self,
        start: Point,
        end: Point,
        triggering_anchors: Iterable[Position] = (
            Position.TOP_LEFT,
            Position.TOP_RIGHT,
            Position.BOTTOM_LEFT,
            Position.BOTTOM_RIGHT,
        ),
    ):
        """
        Args:
            start (Point): The starting point of the line.
            end (Point): The ending point of the line.
            triggering_anchors (List[sv.Position]): A list of positions
                specifying which anchors of the detections bounding box
                to consider when deciding on whether the detection
                has passed the line counter or not. By default, this
                contains the four corners of the detection's bounding box
        """
        self.vector = Vector(start=start, end=end)
        self.limits = self.calculate_region_of_interest_limits(vector=self.vector)
        self.tracker_state: Dict[str, bool] = {}
        self.in_count: int = 0
        self.out_count: int = 0
        self.triggering_anchors = triggering_anchors
        if not list(self.triggering_anchors):
            raise ValueError("Triggering anchors cannot be empty.")

    @staticmethod
    def calculate_region_of_interest_limits(vector: Vector) -> Tuple[Vector, Vector]:
        magnitude = vector.magnitude

        if magnitude == 0:
            raise ValueError("The magnitude of the vector cannot be zero.")

        delta_x = vector.end.x - vector.start.x
        delta_y = vector.end.y - vector.start.y

        unit_vector_x = delta_x / magnitude
        unit_vector_y = delta_y / magnitude

        perpendicular_vector_x = -unit_vector_y
        perpendicular_vector_y = unit_vector_x

        start_region_limit = Vector(
            start=vector.start,
            end=Point(
                x=vector.start.x + perpendicular_vector_x,
                y=vector.start.y + perpendicular_vector_y,
            ),
        )
        end_region_limit = Vector(
            start=vector.end,
            end=Point(
                x=vector.end.x - perpendicular_vector_x,
                y=vector.end.y - perpendicular_vector_y,
            ),
        )
        return start_region_limit, end_region_limit

    @staticmethod
    def is_point_in_limits(point: Point, limits: Tuple[Vector, Vector]) -> bool:
        cross_product_1 = limits[0].cross_product(point)
        cross_product_2 = limits[1].cross_product(point)
        return (cross_product_1 > 0) == (cross_product_2 > 0)

    def trigger(self, detections: Detections) -> Tuple[np.ndarray, np.ndarray]:
        """
        Update the `in_count` and `out_count` based on the objects that cross the line.

        Args:
            detections (Detections): A list of detections for which to update the
                counts.

        Returns:
            A tuple of two boolean NumPy arrays. The first array indicates which
                detections have crossed the line from outside to inside. The second
                array indicates which detections have crossed the line from inside to
                outside.
        """
        crossed_in = np.full(len(detections), False)
        crossed_out = np.full(len(detections), False)

        if len(detections) == 0:
            return crossed_in, crossed_out

        if detections.tracker_id is None:
            warnings.warn(
                "Line zone counting skipped. LineZone requires tracker_id. Refer to "
                "https://supervision.roboflow.com/latest/trackers for more "
                "information.",
                category=SupervisionWarnings,
            )
            return crossed_in, crossed_out

        all_anchors = np.array(
            [
                detections.get_anchors_coordinates(anchor)
                for anchor in self.triggering_anchors
            ]
        )

        cross_products_1 = cross_product(all_anchors, self.limits[0])
        cross_products_2 = cross_product(all_anchors, self.limits[1])
        in_limits = (cross_products_1 > 0) == (cross_products_2 > 0)
        in_limits = np.all(in_limits, axis=0)

        triggers = cross_product(all_anchors, self.vector) < 0
        has_any_left_trigger = np.any(triggers, axis=0)
        has_any_right_trigger = np.any(~triggers, axis=0)
        is_uniformly_triggered = ~(has_any_left_trigger & has_any_right_trigger)
        for i, tracker_id in enumerate(detections.tracker_id):
            if not in_limits[i]:
                continue

            if not is_uniformly_triggered[i]:
                continue

            tracker_state = has_any_left_trigger[i]
            if tracker_id not in self.tracker_state:
                self.tracker_state[tracker_id] = tracker_state
                continue

            if self.tracker_state.get(tracker_id) == tracker_state:
                continue

            self.tracker_state[tracker_id] = tracker_state
            if tracker_state:
                self.in_count += 1
                crossed_in[i] = True
            else:
                self.out_count += 1
                crossed_out[i] = True

        return crossed_in, crossed_out

Functions

__init__(start, end, triggering_anchors=(Position.TOP_LEFT, Position.TOP_RIGHT, Position.BOTTOM_LEFT, Position.BOTTOM_RIGHT))

Parameters:

Name Type Description Default
start Point

The starting point of the line.

required
end Point

The ending point of the line.

required
triggering_anchors List[Position]

A list of positions specifying which anchors of the detections bounding box to consider when deciding on whether the detection has passed the line counter or not. By default, this contains the four corners of the detection's bounding box

(TOP_LEFT, TOP_RIGHT, BOTTOM_LEFT, BOTTOM_RIGHT)
Source code in supervision/detection/line_zone.py
def __init__(
    self,
    start: Point,
    end: Point,
    triggering_anchors: Iterable[Position] = (
        Position.TOP_LEFT,
        Position.TOP_RIGHT,
        Position.BOTTOM_LEFT,
        Position.BOTTOM_RIGHT,
    ),
):
    """
    Args:
        start (Point): The starting point of the line.
        end (Point): The ending point of the line.
        triggering_anchors (List[sv.Position]): A list of positions
            specifying which anchors of the detections bounding box
            to consider when deciding on whether the detection
            has passed the line counter or not. By default, this
            contains the four corners of the detection's bounding box
    """
    self.vector = Vector(start=start, end=end)
    self.limits = self.calculate_region_of_interest_limits(vector=self.vector)
    self.tracker_state: Dict[str, bool] = {}
    self.in_count: int = 0
    self.out_count: int = 0
    self.triggering_anchors = triggering_anchors
    if not list(self.triggering_anchors):
        raise ValueError("Triggering anchors cannot be empty.")

trigger(detections)

Update the in_count and out_count based on the objects that cross the line.

Parameters:

Name Type Description Default
detections Detections

A list of detections for which to update the counts.

required

Returns:

Type Description
Tuple[ndarray, ndarray]

A tuple of two boolean NumPy arrays. The first array indicates which detections have crossed the line from outside to inside. The second array indicates which detections have crossed the line from inside to outside.

Source code in supervision/detection/line_zone.py
def trigger(self, detections: Detections) -> Tuple[np.ndarray, np.ndarray]:
    """
    Update the `in_count` and `out_count` based on the objects that cross the line.

    Args:
        detections (Detections): A list of detections for which to update the
            counts.

    Returns:
        A tuple of two boolean NumPy arrays. The first array indicates which
            detections have crossed the line from outside to inside. The second
            array indicates which detections have crossed the line from inside to
            outside.
    """
    crossed_in = np.full(len(detections), False)
    crossed_out = np.full(len(detections), False)

    if len(detections) == 0:
        return crossed_in, crossed_out

    if detections.tracker_id is None:
        warnings.warn(
            "Line zone counting skipped. LineZone requires tracker_id. Refer to "
            "https://supervision.roboflow.com/latest/trackers for more "
            "information.",
            category=SupervisionWarnings,
        )
        return crossed_in, crossed_out

    all_anchors = np.array(
        [
            detections.get_anchors_coordinates(anchor)
            for anchor in self.triggering_anchors
        ]
    )

    cross_products_1 = cross_product(all_anchors, self.limits[0])
    cross_products_2 = cross_product(all_anchors, self.limits[1])
    in_limits = (cross_products_1 > 0) == (cross_products_2 > 0)
    in_limits = np.all(in_limits, axis=0)

    triggers = cross_product(all_anchors, self.vector) < 0
    has_any_left_trigger = np.any(triggers, axis=0)
    has_any_right_trigger = np.any(~triggers, axis=0)
    is_uniformly_triggered = ~(has_any_left_trigger & has_any_right_trigger)
    for i, tracker_id in enumerate(detections.tracker_id):
        if not in_limits[i]:
            continue

        if not is_uniformly_triggered[i]:
            continue

        tracker_state = has_any_left_trigger[i]
        if tracker_id not in self.tracker_state:
            self.tracker_state[tracker_id] = tracker_state
            continue

        if self.tracker_state.get(tracker_id) == tracker_state:
            continue

        self.tracker_state[tracker_id] = tracker_state
        if tracker_state:
            self.in_count += 1
            crossed_in[i] = True
        else:
            self.out_count += 1
            crossed_out[i] = True

    return crossed_in, crossed_out

LineZoneAnnotator

Source code in supervision/detection/line_zone.py
class LineZoneAnnotator:
    def __init__(
        self,
        thickness: float = 2,
        color: Color = Color.WHITE,
        text_thickness: float = 2,
        text_color: Color = Color.BLACK,
        text_scale: float = 0.5,
        text_offset: float = 1.5,
        text_padding: int = 10,
        custom_in_text: Optional[str] = None,
        custom_out_text: Optional[str] = None,
        display_in_count: bool = True,
        display_out_count: bool = True,
    ):
        """
        Initialize the LineCounterAnnotator object with default values.

        Attributes:
            thickness (float): The thickness of the line that will be drawn.
            color (Color): The color of the line that will be drawn.
            text_thickness (float): The thickness of the text that will be drawn.
            text_color (Color): The color of the text that will be drawn.
            text_scale (float): The scale of the text that will be drawn.
            text_offset (float): The offset of the text that will be drawn.
            text_padding (int): The padding of the text that will be drawn.
            display_in_count (bool): Whether to display the in count or not.
            display_out_count (bool): Whether to display the out count or not.

        """
        self.thickness: float = thickness
        self.color: Color = color
        self.text_thickness: float = text_thickness
        self.text_color: Color = text_color
        self.text_scale: float = text_scale
        self.text_offset: float = text_offset
        self.text_padding: int = text_padding
        self.custom_in_text: str = custom_in_text
        self.custom_out_text: str = custom_out_text
        self.display_in_count: bool = display_in_count
        self.display_out_count: bool = display_out_count

    def _annotate_count(
        self,
        frame: np.ndarray,
        center_text_anchor: Point,
        text: str,
        is_in_count: bool,
    ) -> None:
        """This method is drawing the text on the frame.

        Args:
            frame (np.ndarray): The image on which the text will be drawn.
            center_text_anchor: The center point that the text will be drawn.
            text (str): The text that will be drawn.
            is_in_count (bool): Whether to display the in count or out count.
        """
        _, text_height = cv2.getTextSize(
            text, cv2.FONT_HERSHEY_SIMPLEX, self.text_scale, self.text_thickness
        )[0]

        if is_in_count:
            center_text_anchor.y -= int(self.text_offset * text_height)
        else:
            center_text_anchor.y += int(self.text_offset * text_height)

        draw_text(
            scene=frame,
            text=text,
            text_anchor=center_text_anchor,
            text_color=self.text_color,
            text_scale=self.text_scale,
            text_thickness=self.text_thickness,
            text_padding=self.text_padding,
            background_color=self.color,
        )

    def annotate(self, frame: np.ndarray, line_counter: LineZone) -> np.ndarray:
        """
        Draws the line on the frame using the line_counter provided.

        Attributes:
            frame (np.ndarray): The image on which the line will be drawn.
            line_counter (LineCounter): The line counter
                that will be used to draw the line.

        Returns:
            np.ndarray: The image with the line drawn on it.

        """
        cv2.line(
            frame,
            line_counter.vector.start.as_xy_int_tuple(),
            line_counter.vector.end.as_xy_int_tuple(),
            self.color.as_bgr(),
            self.thickness,
            lineType=cv2.LINE_AA,
            shift=0,
        )
        cv2.circle(
            frame,
            line_counter.vector.start.as_xy_int_tuple(),
            radius=5,
            color=self.text_color.as_bgr(),
            thickness=-1,
            lineType=cv2.LINE_AA,
        )
        cv2.circle(
            frame,
            line_counter.vector.end.as_xy_int_tuple(),
            radius=5,
            color=self.text_color.as_bgr(),
            thickness=-1,
            lineType=cv2.LINE_AA,
        )

        text_anchor = Vector(
            start=line_counter.vector.start, end=line_counter.vector.end
        )

        if self.display_in_count:
            in_text = (
                f"{self.custom_in_text}: {line_counter.in_count}"
                if self.custom_in_text is not None
                else f"in: {line_counter.in_count}"
            )
            self._annotate_count(
                frame=frame,
                center_text_anchor=text_anchor.center,
                text=in_text,
                is_in_count=True,
            )

        if self.display_out_count:
            out_text = (
                f"{self.custom_out_text}: {line_counter.out_count}"
                if self.custom_out_text is not None
                else f"out: {line_counter.out_count}"
            )
            self._annotate_count(
                frame=frame,
                center_text_anchor=text_anchor.center,
                text=out_text,
                is_in_count=False,
            )
        return frame

Functions

__init__(thickness=2, color=Color.WHITE, text_thickness=2, text_color=Color.BLACK, text_scale=0.5, text_offset=1.5, text_padding=10, custom_in_text=None, custom_out_text=None, display_in_count=True, display_out_count=True)

Initialize the LineCounterAnnotator object with default values.

Attributes:

Name Type Description
thickness float

The thickness of the line that will be drawn.

color Color

The color of the line that will be drawn.

text_thickness float

The thickness of the text that will be drawn.

text_color Color

The color of the text that will be drawn.

text_scale float

The scale of the text that will be drawn.

text_offset float

The offset of the text that will be drawn.

text_padding int

The padding of the text that will be drawn.

display_in_count bool

Whether to display the in count or not.

display_out_count bool

Whether to display the out count or not.

Source code in supervision/detection/line_zone.py
def __init__(
    self,
    thickness: float = 2,
    color: Color = Color.WHITE,
    text_thickness: float = 2,
    text_color: Color = Color.BLACK,
    text_scale: float = 0.5,
    text_offset: float = 1.5,
    text_padding: int = 10,
    custom_in_text: Optional[str] = None,
    custom_out_text: Optional[str] = None,
    display_in_count: bool = True,
    display_out_count: bool = True,
):
    """
    Initialize the LineCounterAnnotator object with default values.

    Attributes:
        thickness (float): The thickness of the line that will be drawn.
        color (Color): The color of the line that will be drawn.
        text_thickness (float): The thickness of the text that will be drawn.
        text_color (Color): The color of the text that will be drawn.
        text_scale (float): The scale of the text that will be drawn.
        text_offset (float): The offset of the text that will be drawn.
        text_padding (int): The padding of the text that will be drawn.
        display_in_count (bool): Whether to display the in count or not.
        display_out_count (bool): Whether to display the out count or not.

    """
    self.thickness: float = thickness
    self.color: Color = color
    self.text_thickness: float = text_thickness
    self.text_color: Color = text_color
    self.text_scale: float = text_scale
    self.text_offset: float = text_offset
    self.text_padding: int = text_padding
    self.custom_in_text: str = custom_in_text
    self.custom_out_text: str = custom_out_text
    self.display_in_count: bool = display_in_count
    self.display_out_count: bool = display_out_count

annotate(frame, line_counter)

Draws the line on the frame using the line_counter provided.

Attributes:

Name Type Description
frame ndarray

The image on which the line will be drawn.

line_counter LineCounter

The line counter that will be used to draw the line.

Returns:

Type Description
ndarray

np.ndarray: The image with the line drawn on it.

Source code in supervision/detection/line_zone.py
def annotate(self, frame: np.ndarray, line_counter: LineZone) -> np.ndarray:
    """
    Draws the line on the frame using the line_counter provided.

    Attributes:
        frame (np.ndarray): The image on which the line will be drawn.
        line_counter (LineCounter): The line counter
            that will be used to draw the line.

    Returns:
        np.ndarray: The image with the line drawn on it.

    """
    cv2.line(
        frame,
        line_counter.vector.start.as_xy_int_tuple(),
        line_counter.vector.end.as_xy_int_tuple(),
        self.color.as_bgr(),
        self.thickness,
        lineType=cv2.LINE_AA,
        shift=0,
    )
    cv2.circle(
        frame,
        line_counter.vector.start.as_xy_int_tuple(),
        radius=5,
        color=self.text_color.as_bgr(),
        thickness=-1,
        lineType=cv2.LINE_AA,
    )
    cv2.circle(
        frame,
        line_counter.vector.end.as_xy_int_tuple(),
        radius=5,
        color=self.text_color.as_bgr(),
        thickness=-1,
        lineType=cv2.LINE_AA,
    )

    text_anchor = Vector(
        start=line_counter.vector.start, end=line_counter.vector.end
    )

    if self.display_in_count:
        in_text = (
            f"{self.custom_in_text}: {line_counter.in_count}"
            if self.custom_in_text is not None
            else f"in: {line_counter.in_count}"
        )
        self._annotate_count(
            frame=frame,
            center_text_anchor=text_anchor.center,
            text=in_text,
            is_in_count=True,
        )

    if self.display_out_count:
        out_text = (
            f"{self.custom_out_text}: {line_counter.out_count}"
            if self.custom_out_text is not None
            else f"out: {line_counter.out_count}"
        )
        self._annotate_count(
            frame=frame,
            center_text_anchor=text_anchor.center,
            text=out_text,
            is_in_count=False,
        )
    return frame

Comments