Detections¶
The sv.Detections
allows you to convert results from a variety of object detection
and segmentation models into a single, unified format. The sv.Detections
class
enables easy data manipulation and filtering, and provides a consistent API for
Supervision's tools like trackers, annotators, and zones.
import cv2
import supervision as sv
from ultralytics import YOLO
image = cv2.imread(<SOURCE_IMAGE_PATH>)
model = YOLO('yolov8s.pt')
annotator = sv.BoundingBoxAnnotator()
result = model(image)[0]
detections = sv.Detections.from_ultralytics(result)
annotated_image = annotator.annotate(image, detections)
Tip
In sv.Detections
, detection data is categorized into two main field types:
fixed and custom. The fixed fields include xyxy
, mask
, confidence
,
class_id
, and tracker_id
. For any additional data requirements, custom
fields come into play, stored in the data field. These custom fields are easily
accessible using the detections[<FIELD_NAME>]
syntax, providing flexibility
for diverse data handling needs.
Attributes:
Name | Type | Description |
---|---|---|
xyxy |
ndarray
|
An array of shape |
mask |
Optional[ndarray]
|
(Optional[np.ndarray]): An array of shape
|
confidence |
Optional[ndarray]
|
An array of shape
|
class_id |
Optional[ndarray]
|
An array of shape
|
tracker_id |
Optional[ndarray]
|
An array of shape
|
data |
Dict[str, Union[ndarray, List]]
|
A dictionary containing additional data where each key is a string representing the data type, and the value is either a NumPy array or a list of corresponding data. |
Warning
The data
field in the sv.Detections
class is currently in an experimental
phase. Please be aware that its API and functionality are subject to change in
future updates as we continue to refine and improve its capabilities.
We encourage users to experiment with this feature and provide feedback, but
also to be prepared for potential modifications in upcoming releases.
Source code in supervision/detection/core.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 |
|
Attributes¶
area: np.ndarray
property
¶
Calculate the area of each detection in the set of object detections. If masks field is defined property returns are of each mask. If only box is given property return area of each box.
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: An array of floats containing the area of each detection
in the format of |
box_area: np.ndarray
property
¶
Calculate the area of each bounding box in the set of object detections.
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: An array of floats containing the area of each bounding
box in the format of |
Functions¶
__getitem__(index)
¶
Get a subset of the Detections object or access an item from its data field.
When provided with an integer, slice, list of integers, or a numpy array, this method returns a new Detections object that represents a subset of the original detections. When provided with a string, it accesses the corresponding item in the data dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
Union[int, slice, List[int], ndarray, str]
|
The index, indices, or key to access a subset of the Detections or an item from the data. |
required |
Returns:
Type | Description |
---|---|
Union[Detections, List, ndarray, None]
|
Union[Detections, Any]: A subset of the Detections object or an item from the data field. |
Example
import supervision as sv
detections = sv.Detections()
first_detection = detections[0]
first_10_detections = detections[0:10]
some_detections = detections[[0, 2, 4]]
class_0_detections = detections[detections.class_id == 0]
high_confidence_detections = detections[detections.confidence > 0.5]
feature_vector = detections['feature_vector']
Source code in supervision/detection/core.py
__iter__()
¶
Iterates over the Detections object and yield a tuple of
(xyxy, mask, confidence, class_id, tracker_id, data)
for each detection.
Source code in supervision/detection/core.py
__len__()
¶
__setitem__(key, value)
¶
Set a value in the data dictionary of the Detections object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
str
|
The key in the data dictionary to set. |
required |
value |
Union[ndarray, List]
|
The value to set for the key. |
required |
Example
Source code in supervision/detection/core.py
empty()
classmethod
¶
Create an empty Detections object with no bounding boxes, confidences, or class IDs.
Returns:
Type | Description |
---|---|
Detections
|
An empty Detections object. |
Source code in supervision/detection/core.py
from_azure_analyze_image(azure_result, class_map=None)
classmethod
¶
Creates a Detections instance from Azure Image Analysis 4.0.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
azure_result |
dict
|
The result from Azure Image Analysis. It should contain detected objects and their bounding box coordinates. |
required |
class_map |
Optional[Dict[int, str]]
|
A mapping ofclass IDs (int) to class names (str). If None, a new mapping is created dynamically. |
None
|
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object. |
Example
import requests
import supervision as sv
image = open(input, "rb").read()
endpoint = "https://.cognitiveservices.azure.com/"
subscription_key = ""
headers = {
"Content-Type": "application/octet-stream",
"Ocp-Apim-Subscription-Key": subscription_key
}
response = requests.post(endpoint,
headers=self.headers,
data=image
).json()
detections = sv.Detections.from_azure_analyze_image(response)
Source code in supervision/detection/core.py
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
|
from_deepsparse(deepsparse_results)
classmethod
¶
Creates a Detections instance from a DeepSparse inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deepsparse_results |
YOLOOutput
|
The output Results instance from DeepSparse. |
required |
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object. |
Example
Source code in supervision/detection/core.py
from_detectron2(detectron2_results)
classmethod
¶
Create a Detections object from the Detectron2 inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detectron2_results |
The output of a Detectron2 model containing instances with prediction data. |
required |
Returns:
Type | Description |
---|---|
Detections
|
A Detections object containing the bounding boxes, class IDs, and confidences of the predictions. |
Example
import cv2
import supervision as sv
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
image = cv2.imread(<SOURCE_IMAGE_PATH>)
cfg = get_cfg()
cfg.merge_from_file(<CONFIG_PATH>)
cfg.MODEL.WEIGHTS = <WEIGHTS_PATH>
predictor = DefaultPredictor(cfg)
result = predictor(image)
detections = sv.Detections.from_detectron2(result)
Source code in supervision/detection/core.py
from_inference(roboflow_result)
classmethod
¶
Create a Detections object from the Roboflow API inference result or the Inference package results. This method extracts bounding boxes, class IDs, confidences, and class names from the Roboflow API result and encapsulates them into a Detections object.
Note
Class names can be accessed using the key 'class_name' in the returned object's data attribute.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roboflow_result |
(dict, any)
|
The result from the Roboflow API or Inference package containing predictions. |
required |
Returns:
Type | Description |
---|---|
Detections
|
A Detections object containing the bounding boxes, class IDs, and confidences of the predictions. |
Example
Source code in supervision/detection/core.py
from_mmdetection(mmdet_results)
classmethod
¶
Creates a Detections instance from a mmdetection and mmyolo inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mmdet_results |
DetDataSample
|
The output Results instance from MMDetection. |
required |
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object. |
Example
Source code in supervision/detection/core.py
from_paddledet(paddledet_result)
classmethod
¶
Creates a Detections instance from PaddleDetection inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
paddledet_result |
List[dict]
|
The output Results instance from PaddleDet |
required |
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object. |
Example
import supervision as sv
import paddle
from ppdet.engine import Trainer
from ppdet.core.workspace import load_config
weights = ()
config = ()
cfg = load_config(config)
trainer = Trainer(cfg, mode='test')
trainer.load_weights(weights)
paddledet_result = trainer.predict([images])[0]
detections = sv.Detections.from_paddledet(paddledet_result)
Source code in supervision/detection/core.py
from_roboflow(roboflow_result)
classmethod
¶
Deprecated
Detections.from_roboflow
is deprecated and will be removed in
supervision-0.22.0
. Use Detections.from_inference
instead.
Create a Detections object from the Roboflow API inference result or the Inference package results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
roboflow_result |
dict
|
The result from the Roboflow API containing predictions. |
required |
Returns:
Type | Description |
---|---|
Detections
|
A Detections object containing the bounding boxes, class IDs, and confidences of the predictions. |
Example
Source code in supervision/detection/core.py
from_sam(sam_result)
classmethod
¶
Creates a Detections instance from Segment Anything Model inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sam_result |
List[dict]
|
The output Results instance from SAM |
required |
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object. |
Example
import supervision as sv
from segment_anything import (
sam_model_registry,
SamAutomaticMaskGenerator
)
sam_model_reg = sam_model_registry[MODEL_TYPE]
sam = sam_model_reg(checkpoint=CHECKPOINT_PATH).to(device=DEVICE)
mask_generator = SamAutomaticMaskGenerator(sam)
sam_result = mask_generator.generate(IMAGE)
detections = sv.Detections.from_sam(sam_result=sam_result)
Source code in supervision/detection/core.py
from_tensorflow(tensorflow_results, resolution_wh)
classmethod
¶
Creates a Detections instance from a Tensorflow Hub inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensorflow_results |
dict
|
The output results from Tensorflow Hub. |
required |
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object. |
Example
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
import cv2
module_handle = "https://tfhub.dev/tensorflow/centernet/hourglass_512x512_kpts/1"
model = hub.load(module_handle)
img = np.array(cv2.imread(SOURCE_IMAGE_PATH))
result = model(img)
detections = sv.Detections.from_tensorflow(result)
Source code in supervision/detection/core.py
from_transformers(transformers_results)
classmethod
¶
Creates a Detections instance from object detection transformer inference result.
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object. |
Source code in supervision/detection/core.py
from_ultralytics(ultralytics_results)
classmethod
¶
Creates a Detections instance from a YOLOv8 inference result.
Note
from_ultralytics
is compatible with
detection,
segmentation, and
OBB models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ultralytics_results |
Results
|
The output Results instance from YOLOv8 |
required |
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object. |
Example
Source code in supervision/detection/core.py
from_yolo_nas(yolo_nas_results)
classmethod
¶
Creates a Detections instance from a YOLO-NAS inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
yolo_nas_results |
ImageDetectionPrediction
|
The output Results instance from YOLO-NAS ImageDetectionPrediction is coming from 'super_gradients.training.models.prediction_results' |
required |
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object. |
Example
Source code in supervision/detection/core.py
from_yolov5(yolov5_results)
classmethod
¶
Creates a Detections instance from a YOLOv5 inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
yolov5_results |
Detections
|
The output Detections instance from YOLOv5 |
required |
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object. |
Example
Source code in supervision/detection/core.py
get_anchors_coordinates(anchor)
¶
Calculates and returns the coordinates of a specific anchor point
within the bounding boxes defined by the xyxy
attribute. The anchor
point can be any of the predefined positions in the Position
enum,
such as CENTER
, CENTER_LEFT
, BOTTOM_RIGHT
, etc.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
anchor |
Position
|
An enum specifying the position of the anchor point
within the bounding box. Supported positions are defined in the
|
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: An array of shape |
Raises:
Type | Description |
---|---|
ValueError
|
If the provided |
Source code in supervision/detection/core.py
merge(detections_list)
classmethod
¶
Merge a list of Detections objects into a single Detections object.
This method takes a list of Detections objects and combines their
respective fields (xyxy
, mask
, confidence
, class_id
, and tracker_id
)
into a single Detections object. If all elements in a field are not
None
, the corresponding field will be stacked.
Otherwise, the field will be set to None
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detections_list |
List[Detections]
|
A list of Detections objects to merge. |
required |
Returns:
Type | Description |
---|---|
Detections
|
A single Detections object containing the merged data from the input list. |
Example
import numpy as np
import supervision as sv
detections_1 = sv.Detections(
xyxy=np.array([[15, 15, 100, 100], [200, 200, 300, 300]]),
class_id=np.array([1, 2]),
data={'feature_vector': np.array([0.1, 0.2)])}
)
detections_2 = sv.Detections(
xyxy=np.array([[30, 30, 120, 120]]),
class_id=np.array([1]),
data={'feature_vector': [np.array([0.3])]}
)
merged_detections = Detections.merge([detections_1, detections_2])
merged_detections.xyxy
array([[ 15, 15, 100, 100],
[200, 200, 300, 300],
[ 30, 30, 120, 120]])
merged_detections.class_id
array([1, 2, 1])
merged_detections.data['feature_vector']
array([0.1, 0.2, 0.3])
Source code in supervision/detection/core.py
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 |
|
with_nms(threshold=0.5, class_agnostic=False)
¶
Performs non-max suppression on detection set. If the detections result from a segmentation model, the IoU mask is applied. Otherwise, box IoU is used.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
threshold |
float
|
The intersection-over-union threshold to use for non-maximum suppression. I'm the lower the value the more restrictive the NMS becomes. Defaults to 0.5. |
0.5
|
class_agnostic |
bool
|
Whether to perform class-agnostic non-maximum suppression. If True, the class_id of each detection will be ignored. Defaults to False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A new Detections object containing the subset of detections after non-maximum suppression. |
Raises:
Type | Description |
---|---|
AssertionError
|
If |