Inference Slicer
InferenceSlicer¶
InferenceSlicer performs slicing-based inference for small target detection. This method, often referred to as Slicing Adaptive Inference (SAHI), involves dividing a larger image into smaller slices, performing inference on each slice, and then merging the detections.
Attributes:
Name | Type | Description |
---|---|---|
slice_wh |
Tuple[int, int]
|
Dimensions of each slice in the format
|
overlap_ratio_wh |
Tuple[float, float]
|
Overlap ratio between consecutive
slices in the format |
iou_threshold |
Optional[float]
|
Intersection over Union (IoU) threshold used for non-max suppression. |
callback |
Callable
|
A function that performs inference on a given image slice and returns detections. |
Note
The class ensures that slices do not exceed the boundaries of the original image. As a result, the final slices in the row and column dimensions might be smaller than the specified slice dimensions if the image's width or height is not a multiple of the slice's width or height minus the overlap.
Source code in supervision/detection/tools/inference_slicer.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
__call__(image)
¶
Performs slicing-based inference on the provided image using the specified callback.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image |
ndarray
|
The input image on which inference needs to be
performed. The image should be in the format
|
required |
Returns:
Name | Type | Description |
---|---|---|
Detections |
Detections
|
A collection of detections for the entire image after merging results from all slices and applying NMS. |
Example
>>> import cv2
>>> import supervision as sv
>>> from ultralytics import YOLO
>>> image = cv2.imread(SOURCE_IMAGE_PATH)
>>> model = YOLO(...)
>>> def callback(image_slice: np.ndarray) -> sv.Detections:
... result = model(image_slice)[0]
... return sv.Detections.from_ultralytics(result)
>>> slicer = sv.InferenceSlicer(callback = callback)
>>> detections = slicer(image)
Source code in supervision/detection/tools/inference_slicer.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|