Core
Classifications¶
Source code in supervision/classification/core.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
__post_init__()
¶
Validate the classification inputs.
Source code in supervision/classification/core.py
33 34 35 36 37 38 39 40 |
|
from_yolov8(yolov8_results)
classmethod
¶
Creates a Classifications instance from a YOLOv8 inference result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
yolov8_results |
Results
|
The output Results instance from YOLOv8 |
required |
Returns:
Name | Type | Description |
---|---|---|
Detections |
Classifications
|
A new Classifications object. |
Example
>>> import cv2
>>> from ultralytics import YOLO
>>> import supervision as sv
>>> image = cv2.imread(SOURCE_IMAGE_PATH)
>>> model = YOLO('yolov8s-cls.pt')
>>> result = model(image)[0]
>>> classifications = sv.Classifications.from_yolov8(result)
Source code in supervision/classification/core.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
|
get_top_k(k)
¶
Retrieve the top k class IDs and confidences, ordered in descending order by confidence.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
k |
int
|
The number of top class IDs and confidences to retrieve. |
required |
Returns:
Type | Description |
---|---|
Tuple[ndarray, ndarray]
|
Tuple[np.ndarray, np.ndarray]: A tuple containing the top k class IDs and confidences. |
Example
>>> import supervision as sv
>>> classifications = sv.Classifications(...)
>>> classifications.get_top_k(1)
(array([1]), array([0.9]))
Source code in supervision/classification/core.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|