Core
Warning
Dataset API is still fluid and may change. If you use Dataset API in your project until further notice, freeze the
supervision
version in your requirements.txt
or setup.py
.
DetectionDataset¶
Bases: BaseDataset
Dataclass containing information about object detection dataset.
Attributes:
Name | Type | Description |
---|---|---|
classes |
List[str]
|
List containing dataset class names. |
images |
Dict[str, ndarray]
|
Dictionary mapping image name to image. |
annotations |
Dict[str, Detections]
|
Dictionary mapping image name to annotations. |
Source code in supervision/dataset/core.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
|
__iter__()
¶
Iterate over the images and annotations in the dataset.
Yields:
Type | Description |
---|---|
str
|
Iterator[Tuple[str, np.ndarray, Detections]]: An iterator that yields tuples containing the image name, the image data, and its corresponding annotation. |
Source code in supervision/dataset/core.py
64 65 66 67 68 69 70 71 72 73 |
|
__len__()
¶
Return the number of images in the dataset.
Returns:
Name | Type | Description |
---|---|---|
int |
int
|
The number of images. |
Source code in supervision/dataset/core.py
55 56 57 58 59 60 61 62 |
|
as_pascal_voc(images_directory_path=None, annotations_directory_path=None, min_image_area_percentage=0.0, max_image_area_percentage=1.0, approximation_percentage=0.0)
¶
Exports the dataset to PASCAL VOC format. This method saves the images and their corresponding annotations in PASCAL VOC format, which consists of XML files. The method allows filtering the detections based on their area percentage.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images_directory_path |
Optional[str]
|
The path to the directory where the images should be saved. If not provided, images will not be saved. |
None
|
annotations_directory_path |
Optional[str]
|
The path to the directory where the annotations in PASCAL VOC format should be saved. If not provided, annotations will not be saved. |
None
|
min_image_area_percentage |
float
|
The minimum percentage of detection area relative to the image area for a detection to be included. |
0.0
|
max_image_area_percentage |
float
|
The maximum percentage of detection area relative to the image area for a detection to be included. |
1.0
|
approximation_percentage |
float
|
The percentage of polygon points to be removed from the input polygon, in the range [0, 1). |
0.0
|
Source code in supervision/dataset/core.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
as_yolo(images_directory_path=None, annotations_directory_path=None, data_yaml_path=None, min_image_area_percentage=0.0, max_image_area_percentage=1.0, approximation_percentage=0.0)
¶
Exports the dataset to YOLO format. This method saves the images and their corresponding annotations in YOLO format, which is a simple text file that describes an object in the image. It also allows for the optional saving of a data.yaml file, used in YOLOv5, that contains metadata about the dataset.
The method allows filtering the detections based on their area percentage and offers an option for polygon approximation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images_directory_path |
Optional[str]
|
The path to the directory where the images should be saved. If not provided, images will not be saved. |
None
|
annotations_directory_path |
Optional[str]
|
The path to the directory where the annotations in YOLO format should be saved. If not provided, annotations will not be saved. |
None
|
data_yaml_path |
Optional[str]
|
The path where the data.yaml file should be saved. If not provided, the file will not be saved. |
None
|
min_image_area_percentage |
float
|
The minimum percentage of detection area relative to the image area for a detection to be included. |
0.0
|
max_image_area_percentage |
float
|
The maximum percentage of detection area relative to the image area for a detection to be included. |
1.0
|
approximation_percentage |
float
|
The percentage of polygon points to be removed from the input polygon, in the range [0, 1). This is useful for simplifying the annotations. |
0.0
|
Source code in supervision/dataset/core.py
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
|
from_pascal_voc(images_directory_path, annotations_directory_path)
classmethod
¶
Creates a Dataset instance from PASCAL VOC formatted data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images_directory_path |
str
|
The path to the directory containing the images. |
required |
annotations_directory_path |
str
|
The path to the directory containing the PASCAL VOC XML annotations. |
required |
Returns:
Name | Type | Description |
---|---|---|
DetectionDataset |
DetectionDataset
|
A DetectionDataset instance containing the loaded images and annotations. |
Example
>>> import roboflow
>>> from roboflow import Roboflow
>>> import supervision as sv
>>> roboflow.login()
>>> rf = Roboflow()
>>> project = rf.workspace(WORKSPACE_ID).project(PROJECT_ID)
>>> dataset = project.version(PROJECT_VERSION).download("voc")
>>> ds = sv.DetectionDataset.from_yolo(
... images_directory_path=f"{dataset.location}/train/images",
... annotations_directory_path=f"{dataset.location}/train/labels"
... )
>>> ds.classes
['dog', 'person']
Source code in supervision/dataset/core.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|
from_yolo(images_directory_path, annotations_directory_path, data_yaml_path, force_masks=False)
classmethod
¶
Creates a Dataset instance from YOLO formatted data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images_directory_path |
str
|
The path to the directory containing the images. |
required |
annotations_directory_path |
str
|
The path to the directory containing the YOLO annotation files. |
required |
data_yaml_path |
str
|
The path to the data YAML file containing class information. |
required |
force_masks |
bool
|
If True, forces masks to be loaded for all annotations, regardless of whether they are present. |
False
|
Returns:
Name | Type | Description |
---|---|---|
DetectionDataset |
DetectionDataset
|
A DetectionDataset instance containing the loaded images and annotations. |
Example
>>> import roboflow
>>> from roboflow import Roboflow
>>> import supervision as sv
>>> roboflow.login()
>>> rf = Roboflow()
>>> project = rf.workspace(WORKSPACE_ID).project(PROJECT_ID)
>>> dataset = project.version(PROJECT_VERSION).download("yolov5")
>>> ds = sv.DetectionDataset.from_yolo(
... images_directory_path=f"{dataset.location}/train/images",
... annotations_directory_path=f"{dataset.location}/train/labels",
... data_yaml_path=f"{dataset.location}/data.yaml"
... )
>>> ds.classes
['dog', 'person']
Source code in supervision/dataset/core.py
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
|
split(split_ratio=0.8, random_state=None, shuffle=True)
¶
Splits the dataset into two parts (training and testing) using the provided split_ratio.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
split_ratio |
float
|
The ratio of the training set to the entire dataset. |
0.8
|
random_state |
int
|
The seed for the random number generator. This is used for reproducibility. |
None
|
shuffle |
bool
|
Whether to shuffle the data before splitting. |
True
|
Returns:
Type | Description |
---|---|
Tuple[DetectionDataset, DetectionDataset]
|
Tuple[DetectionDataset, DetectionDataset]: A tuple containing the training and testing datasets. |
Example
>>> import supervision as sv
>>> ds = sv.DetectionDataset(...)
>>> train_ds, test_ds = ds.split(split_ratio=0.7, random_state=42, shuffle=True)
>>> len(train_ds), len(test_ds)
(700, 300)
Source code in supervision/dataset/core.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|
ClassificationDataset¶
Bases: BaseDataset
Dataclass containing information about a classification dataset.
Attributes:
Name | Type | Description |
---|---|---|
classes |
List[str]
|
List containing dataset class names. |
images |
Dict[str, ndarray]
|
Dictionary mapping image name to image. |
annotations |
Dict[str, Detections]
|
Dictionary mapping image name to annotations. |
Source code in supervision/dataset/core.py
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
|
as_folder_structure(root_directory_path)
¶
Saves the dataset as a multi-class folder structure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
root_directory_path |
str
|
The path to the directory where the dataset will be saved. |
required |
Source code in supervision/dataset/core.py
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
|
from_folder_structure(root_directory_path)
classmethod
¶
Load data from a multiclass folder structure into a ClassificationDataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
root_directory_path |
str
|
The path to the dataset directory. |
required |
Returns:
Name | Type | Description |
---|---|---|
ClassificationDataset |
ClassificationDataset
|
The dataset. |
Example
>>> import roboflow
>>> from roboflow import Roboflow
>>> import supervision as sv
>>> roboflow.login()
>>> rf = Roboflow()
>>> project = rf.workspace(WORKSPACE_ID).project(PROJECT_ID)
>>> dataset = project.version(PROJECT_VERSION).download("folder")
>>> cd = sv.ClassificationDataset.from_folder_structure(
... root_directory_path=f"{dataset.location}/train"
... )
Source code in supervision/dataset/core.py
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
|
split(split_ratio=0.8, random_state=None, shuffle=True)
¶
Splits the dataset into two parts (training and testing) using the provided split_ratio.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
split_ratio |
float
|
The ratio of the training set to the entire dataset. |
0.8
|
random_state |
int
|
The seed for the random number generator. This is used for reproducibility. |
None
|
shuffle |
bool
|
Whether to shuffle the data before splitting. |
True
|
Returns:
Type | Description |
---|---|
Tuple[ClassificationDataset, ClassificationDataset]
|
Tuple[ClassificationDataset, ClassificationDataset]: A tuple containing the training and testing datasets. |
Example
>>> import supervision as sv
>>> cd = sv.ClassificationDataset(...)
>>> train_cd, test_cd = cd.split(split_ratio=0.7, random_state=42, shuffle=True)
>>> len(train_cd), len(test_cd)
(700, 300)
Source code in supervision/dataset/core.py
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
|